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Abstract Finding and treating cancer as soon as possible help patients get better outcomes. Patients 

requiring imaging or biopsy tests sometimes find it challenging to access them because these procedures 

are often limited by their high cost and availability in clinical settings. Recent AI methods, particularly those 

involving deep learning, can address these problems and significantly enhance the process for detecting 

cancer, offering greater efficiency and scalability. In this context, LLMs and VLMs are considered leading 

solutions for trying to make sense of multimodal variables within AI-driven healthcare systems. Although 

LLMs are strong at working with unstructured, clinically related text data, they have not often been used 

for patient assessment beyond descriptive or summarization tasks, by combining images and descriptions, 

along with both structured and unstructured data. The VLMs allow doctors and medical researchers to 

catch cancer symptoms from multiple angles. In this work, we study both LLMs and VLMs in cancer 

detection, analyzing their architectures, learning mechanisms, and performance on various datasets, and 

identifying directions for expanding multimodal AI in healthcare. Our results indicate that combining these 

two data types enhances how accurately we are able to diagnose patients across different types of cancer. 

Our studies in MIMIC-III, MIMIC-IV, TCGA, and CAMELYON 16/17 datasets revealed that multimodal 

transformer models significantly improve the accuracy of diagnosing biopsy results. In particular, BioViL 

achieves an AUC-ROC of 0.92 for detecting lung cancer, whereas CLIP Fine-tuned achieves a similar result 

of 0.91 for colon cancer detection. 

Keywords Cancer detection; Vision-Language Models; Large Language Models; Transformers; Clinical 
data, Histopathology; Medical Imaging; Multimodal AI.

I. Introduction 

Cancer remains one of the leading causes of mortality 
worldwide, with an estimated 19.3 million new cases 
and almost 10 million deaths in 2020 (as per the 
International Agency for Research on Cancer (IARC) 
and the World Health Organization (WHO) [1]. It is 
estimated that these numbers will be increased by 
nearly half in 2040, which not only make cancer one of 
the most important health-related issues but also a 
significant economic and social burden. Cancer care is 
estimated to cost the economy USD 1.16 trillion each 
year, with inconsistent effects on the low- and middle-
income nations, where resources to aid diagnosis are 
limited [2]. Timely and accurate diagnosis is one of the 
most effective measures to increase survival rates, 
optimize treatment courses, and decrease the number 
of financial and emotional costs imposed on patients 
and medical services. Conventional diagnostic 
methods remain incomplete despite decades of 
investigation. Radiological imaging, like CT, MRI, PET, 
and mammography, is capable of essential and 
practical evaluation of tumors but may not work in the 

case of early tumor detection, and also highly relies on 
office interpretation [4]. The efficient standard is 
considered to be histopathological biopsies, which are 
aggressive and prone to inter-observer variation [5]. 
Biomarker testing provides molecular information that 
is not globally applicable to all cancer subclasses [6]. 
The challenges make it apparent that the pressing 
need in the diagnostic solutions is for them to be 
scalable, available, and capable of combining various 
sources of clinical data. Artificial Intelligence (AI) is a 
recent strategy in the healthcare sector, as it suggests 
advanced approaches to computerize and improve 
cancer diagnostics [39]. Although the initial 
applications of Deep Learning (DL) show encouraging 
outcomes in unimodal tasks, such as skin cancer and 
histopathology slide analysis [7] [8], the systems are 
unimodal and do not provide the broadened 
capabilities of AI due to their limited scalability on large 
and heterogeneous datasets [9]. These innovations 
create the possibility of combining medical text and 
images, among other forms of data, in structures for 
cancer detection. 
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Though, regardless of these developments, there are 
still a number of challenges. First, the generalization of 
most multimodal AI systems is incorrect because 
cancer data in different institutions, patient groups, and 
imaging modalities are heterogeneous [23]. Second, 
the affected data silos are because medical datasets 
are disjointed and constrained by privacy laws, which 
hamper large-scale training [24]. Third, a significant 
obstacle is interpretability; models are very diagnostic, 
but clinical practice normally requires clear decision-
making mechanisms to develop trust and implement 
them in clinical settings [25]. Additionally, scalability is 
also an essential issue, as transformer-based models 
[21] can be very resource-intensive and challenging to 
deploy in healthcare systems with limited resources 
[26]. Finally, such ethical and regulatory concerns as 
bias, fairness, and patient privacy are still in the 
process of clinical integration, and the question of 
accountability with safety in practical execution [27, 28]. 

This paper makes the following contributions: 

1. Evaluating transformer-based LLMs for cancer 

detection in clinical texts. 

2. Evaluating VLMs for multimodal (text + image) 

cancer diagnosis. 

3. Analyzing the diagnostic of Vision Language 

integration compared to unimodal methods. 

4. Discussing challenges such as model 

interpretability, multimodal fusion, and clinical 

deployment. 

In particular, we examine representative models 
including BioGPT-VL, LLaVA-Med, and RadFM, 
demonstrate their capabilities for cancer classification, 
report generation, and early disease detection [5]. We 
also highlight that these models overcome some 
limitations of traditional methods while acknowledging 
open challenges such as data heterogeneity, 
generalization, and clinical standardization [10]. This 
paper intends to prove the transformer power of 
multimodal AI systems in the diagnosis of cancer by 
critically analyzing the state of the art LLMs and VLMs. 
The work does not only benchmark the existing models 
but also outlines the existing gaps in the work, which 
need to be filled in to achieve adequate, safe, reliable, 
and fair implementation of these technologies in the 
real-life oncology environment. 

II. Related Work 

The most current developments in AI technology have 
created a new horizon in cancer detection, especially 
in the case of the combined use of VLMs [23] and 
transformer-based LLMs [1]. The conventional 
diagnosis methods, although they are significant, are 
usually limited in terms of their sensitivity, reliability, 
and applicability. Joint processing of medical images 
and clinical text, with the help of multimodal AI systems, 
allows for a more effective and timely diagnosis of 

cancer [36]. VLMs bridge the gap between visual 
information and textual expertise, while LLMs enhance 
the interpretation of complex medical narratives. In 
combination, the technologies transform the game of 
oncological diagnostics with powerful, situation-aware, 
and automated decision support.  

A. Traditional Cancer Detection Methods 

Medical imaging, histopathology, and biomarker tests 
form the foundation of cancer diagnosis, which is 
inherently limited. Imaging modalities, such as CT, 
MRI, PET, and mammography, provide invaluable 
spatial information but often fail in the early detection of 
tumors, requiring expert interpretation [30]. The culture 
histopathological method is regarded as an important 
standard. However, it is invasive, time-consuming, and 
prone to inter-observer variability [13] [28]. The test of 
biomarkers (e.g., PSA, HER2, and CA-125) also 
provides information at the molecular level but is not 
universally applicable across different types of cancer 
[30]. The initial deep learning work,  such as that by 
Esteva et al. [15], had already shown that 
dermatologist-level accuracy in skin cancer 
classification is possible with images, and Coudray et 
al. [12] and Campanella et al. [13] had provided 
evidence that CNNs can be used with histopathology 
slides. Nevertheless, these unimodal approaches 
cannot describe the multifaceted nature of cancer data. 

1. Imaging-Based Diagnostics 

Today, visual tests called imaging are the main tool 
health professionals use to identify cancer. To identify 
irregular cell growths and measure the progress of a 
disease, doctors utilize various imaging technologies, 
including CT, MRI, ultrasound, PET, and 
mammography. Doctors and specialists use CT scans 
and mammograms to find lung cancer and colorectal 
cancer and to identify breast cancer [30]. Despite 
requiring radiologists’ knowledge, these techniques 
commonly have difficulty finding tumors that are just 
starting or are small. 

2. Histopathology 

A biopsy is necessary for pathologists to examine the 
tissue under a microscope as part of regular 
histopathological analysis. Though direct microscopy, 
doctors can check for cell problems at the same time 
as they spot, classify, and identify the main forms of 
each type of tumor. Although it takes time and is 
considered the most reliable method, cancer diagnosis 
[1] [3] through biopsy relies heavily on the expertise of 
pathologists. The differences in decisions between 
experts make it hard to reach consistent assessments 
and outcomes [4] [5] in many cases. 

3. Biomarker Testing 

Doctors can identify cancer and track its advancement 
through biomarker examination of blood tests along 
with urine collection or tissue samples using proteins 
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and hormones together with genetic mutations. Three 
widespread biomarkers used to detect cancer exist 
within the medical field: PSA (Prostate-Specific 
Antigen) for prostatic malignancies and CA-125 for 
ovarian cancer, together with HER2 expression 
analysis for breast cancer pathology [1]. Many useful 
biomarkers fail to produce either precise detection 
methods or sensitive detection capability which results 
in incorrect positive readings and early cancer 
identification failures. Not all cancers possess 
established biomarkers that receive universal 
acceptance by the medical community. As shown in the 
Fig. 1, the pipeline of the end-to-end deployment of pre-

trained medical VLMs in clinical decision support. It is 
provoked by the pre-training on the multimodal clinical 
data (images, text, and patient records) and proceeds 
with the assessment of performance on specific 
datasets. This is followed by optimization, contrastive 
learning [9], and modular fine-tuning strategies so as to 
achieve the best accuracy that the model can attain. 
Model evaluation is a combination of human expert 
evaluation and quantitative evaluation (e.g., BLEU, 
ROUGE) [31]. Finally, the model would be deployed 
into the clinical pathways, generating actionable 
outputs tailored to patient context and physician orders. 

B. Natural Language Processing in Healthcare 

Electronic Health Records (EHRs), discharge 
summaries, and pathology notes have been analyzed 
to a wide extent using Natural Language Processing 
(NLP). The transformer-based models, such as 
BioBERT [2], ClinicalBERT [3], and PubMedBERT, 
largely improved text mining in biomedicine by relying 
on domain-specific corpora such as PubMed and 
MIMIC datasets [16] [17]. Peng et al. [4] showed that 
transfer learning is effective in biomedical NLP. These 
models help in extracting, detecting relations in, and 
automated coding of data, and are used in oncology, 
such as cancer report type and adverse event 
detection. Recent reviewers [29] highlight the 
application of NLP in the pipeline of multimodal 
oncology, especially in conjunction with imaging data. 

1. Applications of NLP in Clinical Settings 

In the healthcare field, NLP assists in supporting 
various operations through its diverse applications. It 

enables the identification of important medical entities, 
such as diseases, medications, procedures, and 
symptoms, from clinical narratives. Then provide 
important patient information that suggests diagnoses 
and indicates prohibited use cases for medical 
personnel. In addition to its clinical function, NLP can 
also be used to process free-text medical reports into 
administrative ICD or SNOMED codes, which are 
necessary for reimbursement, along with 
administrative processing. Through the history of 
patients, the health specialists evaluate the risks of 
disease development chances and detect possible 
healthcare complications. Moreover, a hospital report 
integrated with the public health surveillance system 
can support the real-time detection of diseases, as well 
as adverse drug reactions. Then improving the care of 
patients and overall awareness of the healthcare 
system. 

2. Advancements in Contextual NLP 

 
Fig. 1. Conceptual overview of the VLM pipeline for cancer diagnosis.  (a) Pre-training using multimodal 
clinical inputs. (b) Evaluation on benchmark datasets (e.g., TCGA, MIMIC). (c) Model optimization 
strategies including contrastive and supervised learning. (d) Quantitative and qualitative performance 
evaluation (e.g., AUC, Grad-CAM maps). (e) Clinical deployment for diagnostic support. 
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Clinical NLP underwent diverse transformation through 
deep learning [12] and contextual embedding, which 
led to the development of word2vec, followed by GloVe 
and transformer-based models that include BERT [1]. 
These models read semantic meaning from text 
context therefore they function at a higher performance 
level with complex clinical texts. The pre-training 
process of medical literature and Electronic Health 

Records on BioBERT [2], ClinicalBERT [3], and Blue-

BERT leads to improved domain accuracy. Modern 
healthcare models show effectiveness in recognizing 
medical conditions and drug-illness relationships in 
addition to their ability to condense detailed clinical 
documentation. Interpretation across the entire 
healthcare system becomes accessible because 
enhanced medical terminology understanding links 
ontologies between UMLS, RxNorm and SNOMED CT. 

C. Large Language Models in Medicine  

GPT-4, BioGPT, PubMedBERT, and MedAlpaca are 
other LLMs that transform the field of text in medicine 
by allowing zero-shot and few-shot reasoning 
mechanisms [5] [24] [25]. BioGPT (2022) 
demonstrated its current performance in medical QA 
and cancer-specific entity extraction, while the Med-
PaLM (2023) platform expanded instruction tuning to 
meet medical reasoning standards. The MedAlpaca 
(2023) system became an open-source and lightweight 
medical LLM for clinical tasks. The scalable DL on 
EHRs introduced by Rajkomar et al. [5] earlier formed 
the basis of the present-day applications of LLM. Gupta 
and Lin [34] also raised difficulties, and it was 
demonstrated that even when presented with false 
assumptions when asked a question by a patient, LLMs 
do not produce accurate reactions. Although LLMs are 
powerful in medical text analysis, they can, by design, 
only be unimodal, which requires multimodal 
extensions. The dedical training of these models 
requires broad biomedical data retrieved from PubMed 
sources combined with MIMIC-III [16] records and 
clinical trial data until they develop specialization for 
particular medical applications. As a result, they excel 
in following medical texts, enabling us to find diagnostic 
and therapeutic agents, genetic information, and 
pharmaceutical substances in clinical texts through 
Named Entity Recognition (NER). In addition, relation 
extraction methods reveal meaningful relationships, 
such as drug-disease, gene-disease, or treatment 
response relationships, and enhance clinical 
awareness.  

The NLP system is used to triage patient messages 
with categorized diagnostic regions in written records 
and automated, summarized medical reports, and 
answer questions to address patient needs. 
Additionally, medical system agents utilize past 
information processing with NLP algorithms to 
calculate the likelihood of disease comorbidity, 

including the association between sepsis, diabetes, 
and the risk of cancer, which can provide predictive 
analysis and inform proactive care. GPT-4 achieves 
effective processing of extensive medical documents to 
help doctors generate diagnostic information and 
treatment sequences using the few-shot learning 
approach. Specialized training for general purpose 
LLMs becomes necessary because healthcare 
language includes complex structures and high risk 
operational zones. The implementation of GPT-4 for 
clinical use faces three main implementation hurdles 
because of its hallucinatory behavior together with 
regulatory requirements and explainable system 
expectations. Fig. 1 is a Comprehensive Multimodal 
cancer Detection [32] Pipeline whereby a text and 
image [29] encoder (e.g., BioBERT, ClinicalBERT, and 
ResNet-50) is incorporated to produce joined 
representations.  

Fig. 1 task of training such an embedding is to 
categorize the cancer with contrastive and cross-
entropy loss. It also shows the key clinical issues, lying 
in the heterogeneity of information, interpretability, and 
the necessity to get models that could be explained, 
which could be further used as Grad-CAM, to help in 
early detection and evidence-based clinical decision 
making. The system fuses image features (e.g., 
histopathology or radiographs) and textual reports 
(e.g., pathology or clinical notes) through a dual-
encoder architecture followed by joint reasoning via 
cross-attention or contrastive [40] learning. 

D. Vision Language Models In Medicine 

Vision-Language Models (VLMs) are a type of text-
visual model that allows joint reasoning on radiology 
images, histopathology slides, and patient notes (Fig. 
2). Computer-assisted image-text CLIP [6] has been 
adapted into medical practices. Its domain extension, 
MedCLIP [8], enhanced zero-shot classification and 
image report retrieval error. GLoRIA [7] employed 
hierarchical multimodal learning by mapping textual 
clinical concepts to local representative image regions, 
whereas BioViL [11] maximized radiology-specific 
vision-language pre-training. More recently, CHIEF 
(2024) reached state-of-the-art pan-cancer detection 
with an AUC ~0.94 and showed that multimodal fusion 
can be used to achieve state-of-the-art [24]. A 
transformer framework utilizing multimodal oncology, in 
addition to imaging and text, was introduced by Cai et 
al. [24], known as DeePathNet, emphasizing the 
significance of multimodal data integration with 
pathways in cancer. However, challenges persist. 
Vision-language systems are computationally 
expensive and are usually trained on biased datasets. 
Multimodal oncology frameworks were reviewed by 
Yang et al. [28] and Waqas et al. [29], with the focus on  
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The heterogeneity of the data, its interpretability, and 
equity. Yang et al. [36] identified the problem of bias, 
as they discovered that VLM outputs had demographic 
differences, whereas Clusmann et al. [35] established 
that oncology-focused VLM had prompt injection 
vulnerability. These articles point to the fact that VLMs 
can be highly diagnostic, but such aspects as 
robustness, explainability, and clinical safety are still 
problematic. 

1. Popular VLMs in medicine 

Trained initially on large-scale natural image to text 
pairs, Contrastive Language Image Pre-training (CLIP) 
[6] has been reused for clinical work, but it has 
interpretability challenges. GLoRIA [7] uses 
hierarchical VLM multimodal learning to connect 
textual clinical entities to attend to specific image 
regions and provide a localization in radiology. BioViL 
[11] has radiology-specific vision language pre-trained 
models designed and trained with contrastive and 
masked language objectives. MedCLIP [8] is used in 
the medical field as an extension of CLIP with strong 
retrieval and classification in multiple modalities, with 
high computational expense. Together, these models 
highlight the advantages and limitations of multimodal 
AI in the medical field, particularly in terms of 
generation, interpretability, and training efficiency. 

2. These models currently maintain the best available 

performance levels 

The image report retrieval is one of the tasks, as clinical 
images are compared with the most suitable textual 
reports and vice versa. Zero-shot classification is 
another key feature that enables the diagnosis of 
disease types by using a few training samples with the 

help of textual prompts. VLMs can also help in 
localization activities using weakly labeled data to 
identify areas of interest, such as tumors or lesions. 
Finally, with the advantage of classification and 
localization, these models automatically produce 
natural language reports or summaries directly on 
medical images, which help clinicians provide quick, 
accurate, and readable records. While these models 
highlight progress in Vision Language Learning for 
medicine, they are most important when evaluated in 
isolation, without direct comparison across cancer-
specific tasks. CLIP, though powerful in zero-shot 
learning, struggles in clinical interpretability. BioViL 
achieves strong alignment but remains restricted to 
radiology. MedCLIP generalizes better across domains 
but demands extensive medical pre-training, while 
GLoRIA improves region-level grounding but is 
computationally expensive. More recent multimodal 
frameworks such as CHIEF (2024) extend beyond 
radiology to pan-cancer detection, achieving ~0.94 
AUC, but challenges in interpretability and validation 

remain.  As shown in Fig. 3 (a) and (b), the 

advancement in detection capabilities and the shift of 
classic single modality techniques to the modern 
multimodal paradigms are illustrated. 

E. Cancer detection with NLP and VLMs 

Recent surveys provide methodical insights into 
multimodal AI in oncology. Nakach et al. [30] reported 
on deep learning fusion methods in breast cancer, 
whereas Gao et al. [31] introduced an explainable 
framework for fusion methods in predicting therapy 
response. Patel et al. [33] have focused on cross-
attention transformers to detect anomalies in medical 
imaging, but Waqas et al. [29] and Yang et al.  [28] have 

 
Fig. 2. Overview of the multimodal cancer detection system based on vision-language models (VLMs). 
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placed emphasis on multimodal data integration in 
oncology settings. These works taken together create 
a solid base, yet they also show the necessity to make 
comparative benchmarking of VLMs and LLMs across 
the types of cancer, which inspires the current study. 
Text-based NLP processing analyzes pathology 
reports to detect tumor grades and extract biomarkers, 
while the medical imaging CNN [12] identifies 
suspicious regions in mammograms and 
histopathology slides. To jointly analyze the clinical 
narratives and imaging data, multimodal models 
achieve stronger diagnostic performance. For instance, 

the mammograms paired with radiology reports then 
improve breast cancer localization. The CT scans with 
patient notes enable earlier lung cancer detection, and 
colonoscopy or histology images with textual 
annotations enhance colorectal and prostate cancer 
classification. The pipelines, such as MedCLIP + 
ClinicalNERT, have demonstrated superior sensitivity 
and specificity in Table 1 compared to single-mode 
baselines. Nevertheless, the challenges remain around 
interpretability, dataset generalization, and real-world 
clinical validation, which must be addressed before 
widespread deployment. 

III. Methodology 

In this section, the mathematical context of the 
intended framework to identify cancer with the help of 
LLMs and VLMs will be outlined. To formulate the 
defined task, both unimodal and multimodal 
representations are presented, and the fusion strategy 
defines the learning goals and assessment measures. 

A. Problem definition 

This study addresses two fundamental challenges in 
cancer detection that directly affect clinical decision-
making design requirements. Formally, cancer 
diagnosis is a multimodal classification problem, with 
the medical images and clinical text being mapped to a 
cancer class in Eq. (1) [21] [22]. 

𝑓 =  (𝑋𝑖𝑚𝑔, 𝑋𝑡𝑥𝑡)  →  𝒴    (1) 

Where 𝑋𝑖𝑚𝑔 an input is medical images (CT, MRI, 

histopathology), 𝑋𝑡𝑥𝑡 is clinical textual data (EHRs, 

pathology/radiology reports), 𝒴 𝜖 {0, 1, … , 𝐾  is cancer 

class label. 

1. Text-only Cancer Detection 

The electronic health records, pathology report, and 
radiology outcomes are clinical descriptions that 
provide fundamental diagnostic data. However, the 
texts are typically ambiguous, inconsistent, 

counterintuitive, and filled with unnecessary data. The 
task is to categorize specific clinical notes as a cancer 
diagnosis if they identify the specific cancer type, 
including lung, breast, or colon. Radiology records that 
contain a detected quantity or a hazy object are 
typically a sign of lung cancer. The reports of 
pathology, which state that the carcinoma is HER2 
positive, are usually related to breast cancer, whereas 
the discharge summaries referring to adenocarcinoma 
of the colon point toward colorectal cancer [41]. We 
formulate this as either a binary (cancer vs. non-
cancer) or a multi-class classification problem. The 
model processes the input sequence of tokens  𝑇 =
{𝑡1 , 𝑡2,..𝑡𝑛}, the transformer encoder produces 

contextual embeddings, as defined in Eq. (2) [1]. 

𝐻 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑇) ∈  ℝ𝑛×𝑑   (2) 

Where 𝐻 is the output matrix of the transformer, ℝ is 

set of real number, 𝑛 𝑎𝑛𝑑 𝑑 are number of tokens in 

input sequence and the embedding dimension, ℝ𝑛×𝑑 is 

a matrix with n rows and d columns. In order to get the 
global text representation, the [CLS] token embeddings 
are used to aggregates the clinical report in Eq. (3) [2] 
[3].  

ℎ𝑡𝑥𝑡 = 𝐻[𝐶𝐿𝑆]     (3) 

 
                     (a)                                                                                             (b) 

Fig. 3. (a) Comparative AUC-ROC performance across different cancer detection methods (e.g., TF-IDF, 
BioBERT, BioViL, CLIP). (b) Evolution of cancer detection technologies from traditional single-modality 
methods to modern multimodal transformer-based systems (2010–2025). 
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where ℎ𝑡𝑥𝑡 is a text feature vector representation of the 

whole clinical report, then embedding with 𝐻[𝐶𝐿𝑆] token 

in the transformer model used whole sequence. It 
applies a classification head with softmax to generate 
class probabilities. This approach reduces variability in 
interpretation and provides standardized outputs 
across diverse clinical texts. The global embedding is 
offered by a softmax layer through a classification head 
that generates class probabilities, as defined in Eq. (4) 
[2] [4].  

𝑃((𝒴|𝑋𝑡𝑥𝑡)) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑡 . ℎ𝑡𝑥𝑡 + 𝑏𝑡)  (4) 

Where ℎ𝑡𝑥𝑡 is [CLS] token embedding from BioBERT/ 

ClinicalBERT, 𝑊𝑡 is the weight matrix of the 

classification head, 𝑏𝑡 is a bias vector of the 
classification head, and 𝒴 is a probability distribution 

over cancer classes. 

2. Multimodal Cancer Detection 

Text alone captures semantic descriptions, but imaging 
modalities such as histopathology slides, CT scans, 
and radiographs provide spatial and morphological 
details critical for cancer subtype [15] identification. The 
important integration of both modalities is crucial for 
ensuring decent diagnostic performance for various 
medical tasks. In the case of early tumor detection 
using lung CT scans with corresponding textual 
descriptions, more accurate nodules can be identified. 
The integration of breast cancer histopathology slides 
and pathology notes enhances the evaluation of HER2 
status, resulting in improved efficiency in subtype 
classification. Similarly, during the workflow alignment, 

radiology reports connected to the chest X-rays 
increased the interpretability and consistency of lung 
cancer screening. This task requires VLMs capable of 
learning cross-modal relationships [22] and exploiting 
complementary signals. This framework employs 
contrastive loss to maximize alignment between 
correctly paired image and text embedding while 
penalizing mismatches. This ensures that, for example, 
a lung CT scan is most similar to its associated 
radiology note, improving diagnostic robustness. The 

image and text multimodal embeddings are aligned 
with the help of the contrastive loss function defined in 
Eq. (5) [19].  

𝐻𝑖𝑚𝑔 = 𝑉𝑖𝑇(𝐼)  ∈  ℝ𝑚×𝑑    (5)    

Where 𝐻𝑖𝑚𝑔 is a matrix, where each row is the 

embedding of one image patch, 𝑚 𝑎𝑛𝑑 𝑑 number of 

patches and embedding dimension, 𝐼 is input medical 

image, 𝑉𝑖𝑇(𝐼) is breaks image into small patches and 

encodes them. To establish effective alignment 
between the embeddings of paired images and texts, 
which use InfoNCE contrastive loss, is able to 
maximize the similarity among correctly paired 
embeddings and to minimize similarity between 
unmatched pairs, which improves multimodal 
discrimination ability. The image and text multimodal 
embeddings are further optimized with contrastive loss 
function defined in Eq. (6) [19] [40]. 

ℒ𝐼𝑛𝑓𝑜𝑁𝐶𝐸 = − ∑ log
(

𝑠𝑖𝑚(𝑧𝑖,𝑡𝑖)
𝒯

⁄ )

∑ 𝑒𝑥𝑝(
𝑠𝑖𝑚(𝑧𝑖,𝑡𝑗)

𝒯
⁄ )𝑁

𝑗=1

𝑁
𝑖=1      (6) 

Table 1. Comparison of Foundational Vision Language Models and Recent Advances (2020–2024). 

Model Modality Focus Key Application Reported 
Performance 

Main Limitation 

CLIP General images 
+ text 

Zero-shot 
retrieval, prompt-

based 
classification 

Strong in zero-
shot (~80% 

retrieval 
accuracy on 

generic tasks) 

Poor clinical interpretability; 
not trained on medical data 

BioViL Radiology 
images + reports 

Report-image 
alignment, chest 
X-ray retrieval 

~0.86 AUC 
(radiology 

retrieval tasks) 

Limited to radiology, lacks 
histopathology/generalization 

MedCLIP Medical images 
+ reports 

Image-text 
retrieval, few-
shot diagnosis 

Competitive 
retrieval, 

stronger than 
CLIP in medicine 

Requires large-scale medical 
pre-training, limited 

explainability 

GLoRIA Entity–region 
grounding 

Localizing 
clinical terms in 

images 

Accurate 
grounding of 

pathology terms 

Computationally intensive; 
small datasets 

CHIEF (2024) Multimodal 
(pathology + 
clinical text + 

radiology) 

Pan-cancer 
detection, 
subtype 

classification 

~0.94 AUC 
across multiple 
cancer types 

Early-stage model; limited 
clinical deployment and 

interpretability 
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 where 𝑧𝑖 and 𝑡𝑖 are image and text embeddings, 𝑠𝑖𝑚(. ) 

is cosine similarity, and 𝒯 is a temperature scaling 

factor.       

B. Datasets and Preprocessing 

To build and validate both the unimodal (text-only, 
image-only) and multimodal (image + text) models for 
diagnostic purposes in cancer, we curated and pre-
processed data sets from many publicly available and 
institutionally derived repositories. The datasets range 
through structured clinical reports and raw medical 
imaging to paired multimodal entries [18]. This section 
describes their sources, the way they are structured, 
and preprocessing procedures, as well as their 
complications. The multiple multimodal cancer 
detection benchmark datasets. In order to make it 
reproducible, all preprocessing steps are fully 

explained in Table 2, MIMIC-III/IV (EHR and Clinical 

Notes) discharge summaries, pathology notes, and 
radiology reports are available. Text data were pre-
processed by performing token normalization with 
UMLS, negation identification with NegEx, and section 
division (e.g., introduction, finding, impression, history 
of present illness). TCGA (The Cancer Genome Atlas) 
whole Slide Images (WSIs) were divided into 
overlapping 256 - 256 patches (20 percent), and the 
color variation was reduced by application of Macenko 
stain normalization.  

The class imbalance between the tumor subtypes was 
addressed by patch-wise augmentation on the minority 
class towards rotation, flipping operations, and 
Gaussian noise addition. CAMELYON16/17 contains 
metastasis WSIs of lymph nodes with slide-level and 
region-level annotations. Severe class imbalance was 
compensated with the Synthetic Minority Oversampling 
Technique (SMOTE) at the patch level to overcome the 
underrepresentation of cancer-positive samples. 
MIMIC-CXR (Radiology Reports + Images) multimodal 
with radiology reports alongside the associated chest 
radiographs. All the images were resized to the same 
dimension of 224 x 224, and metadata (such as patient 
age, sex, and admission details) were also 
standardized into the tabular form to enable 
downstream modeling. In this case, histopathology 
slides, we applied the Macenko normalization of the 
stain to minimize the color variation across slides. This 
transformation standardizes an intensity and contrast 
in relation to images, ensuring consistent 
representation during training, and is expressed in Eq. 
(7) [20]. 

𝐼𝑛𝑜𝑟𝑚 =  𝛼. (𝐼 − 𝜇). Σ−1 + 𝛽     (7) 

Where 𝐼 is the raw histopathology image, 𝜇, Σ are the 

mean and covariance of the stain vectors, and 𝛽 control 

contrast and intensity alignment. 

1. Clinical text datasets 

To obtain accurate multimodal cancer results, we 
brought together a variety of both public and our private 
image and text datasets. MIMIC-III [16] and MIMIC-IV 
[17] were the main sources I used for finding clinical 
texts that contained discharge summaries and notes 
from radiology and pathology. They were also 
supported by artificial reports and EHRs that included 
only selected information, as well as EHRs from 
hospitals approved by the IRB. The note listed parts of 
the illness, including results from biopsy, CT, or MRI, 
and current medical history. For cancer-related 
interests, the experts selected the data using ICD-
9/ICD-10 codes and, where necessary, also checked 
them by manually annotating the same information. 
Cancer and non-cancer can be classified using 
different schemas, as well as different types of cancer. 
To verify and review all issues where texts are vague, 
different terms are included, negative statements 
appear, and timing references are included. To do this, 
normalize UMLS, seek out negations with NegEx, and 
leverage the token rules from SciBERT and 
ClinicalBERT for all medical-related information. 

2. Image datasets 

The Cancer Genome Atlas (TCGA) [24], 
CAMELYON16/17, and data collected in clinical 
studies were among the sources of imaging data. The 
images included histopathology slides, CT tests, MRI 
scans, and PET scans. Since whole slide images (WSI) 
[13] are huge and reach gigapixel sizes, flow cytometry 
involves preprocessing the images using Otsu 
threshold, collecting patches that overlap to preserve 
continuity in the image, and applying the Macenko or 
Reinhard methods to lessen color differences. Often, 
all annotations were at the level of a whole slide or just 
a segmentation, apart from limited spatial labels. 
Images from radiology were standardized and resized 
to allow their use with ResNet and ViT models. 

3. Multimodal datasets 

MIMIC-CXR and TCGA, together with their clinical and 
diagnostic details, were integrated to enable 
multimodal learning. Again, the methods they used 
were single tests that led to reports as well as whole 
groups of reports from samples with similar patterns. 
To the pipeline, all the recording pairs were organized 
and tagged accurately, and any missing recordings 
were eliminated. I tried different approaches to 
decrease overfitting and boost the model’s results 
when presented with fresh data. I had to translate many 
pieces into other languages and look for synonyms to 
use throughout the writing, along with other changes. 
The new features I integrated are options to resize, 
control brightness, include artifacts like noise, and 
apply different effects often found in standardized 
histopathology, like scattering of normal tissue and 
blurring. Ensuring the data was preprocessed and 
augmented made it possible to create a multimodal  
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collection meeting all regulatory requirements and 
supporting cancer diagnosis and classification.To 
prepare the models, to arranged them into two groups 
based on whether they handled text or text and images. 

C. Model architecture 

Two models were built for each data type: text-only and 
multimodal (text + image).  

1. LLM Architecture (Text-Only) 

We trained BioBERT and ClinicalBERT which are 
transformer-based models developed for use in 
medicine, to recognize cancer simply by reading text. 
They rely on many layers of transformer encoders, 
along with self-attention and positional encoding, to 
underline the connections between the various parts of 
the text. The classification head combines all the parts 
of the text based on the CLS embedding and then 
sends them through a fully connected layer to 
determine if cancer is present in the text. They can 
perform well, as they are familiar with most biomedical 
terms and can handle lengthy, disorganized patient 
records, even when human involvement is not required. 
Fig. 4 shows the comparative view of two model 
structures of cancer detection. The left one is LLM 
Architecture (Text Only), which accepts textual clinical 
data, passes it through a classification head and CLS 
embedding, and ultimately makes a prediction stating 
'Cancer: No.' On the other hand, the VLM Architecture 
(Text + Image) on the right hand side uses both the 
visual data (e.g., chest X-rays) and textual data. It uses 
patch embedding [19] and a transformer module to 
make a better prediction, and the answer comes out as 
Cancer: Yes. It explains the advantage of multimodal 
learning to make the diagnosis more accurate. The 
system integrates a text encoder (e.g., BioBERT or 
ClinicalBERT) that processes clinical narratives such 
as radiology or pathology reports, and an image 
encoder (e.g., ResNet-50 or Vision Transformer) that 

processes medical images [38], including CT scans or 

histopathology slides. The resulting embeddings are 
fused using either cross-attention or contrastive 
learning mechanisms. The fused representation is 
passed through a classification head using a sigmoid 
or softmax layer to predict cancer presence and type. 
This architecture enables joint reasoning over both 
modalities, improving diagnostic accuracy in complex 
clinical settings.  

2. VLM Architecture (Text + Image) 

Bringing images and text together in their system, 
VLMs make it easier to correctly identify a disease [33]. 

Images from medicine are converted by ViT or ResNet-
50 into a set of patch embedding, including positional 
information. The text encoder applies BERT or 
ClinicalBERT to transform the words in clinical 
narratives and radiology reports into a helpful format. 
This method involves two techniques: (1) Contrastive 
Learning aims to tie the information in images and text 
by computing cosine and using InfoNCE, and (2) 
Cross-Attention makes use of transformer features to 
combine different modalities in detail. Within the output 
layer, neural network classifiers utilize linear functions 

 
Fig. 4. MedFusionNet architecture for multi- 
modal cancer detection. 

 

Table 2. The Datasets and Preprocessing Pipelines for Cancer Detection 

Dataset Modality Preprocessing Steps Access Link 

MIMIC-
III/IV 

Clinical text (EHRs, 
discharge summaries, 

pathology reports) 

Token normalization (UMLS), negation 
handling (NegEx), section splitting (Findings, 

Impressions, HPI) 

https://physio
net.org 

TCGA Whole Slide Images 
(WSIs) 

WSIs segmented into 256×256 patches with 
20% overlap; Macenko stain normalization; 

augmentation for minority tumor classes 

https://portal.g
dc.cancer.gov 

CAMELYO
N16/17 

Histopathology WSIs 
(lymph node 
metastasis) 

Slide- and region-level annotations; class 
imbalance mitigated with SMOTE 

oversampling 

https://camely
on17.grand-

challenge.org 

MIMIC-
CXR 

Radiographs + paired 
radiology reports 

Radiographs resized to 224×224; structured 
metadata extraction (age, sex, admission 

details) 

https://physio
net.org 
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and sigmoid or softmax functions to predict the 
likelihood of cancer or any of its subtypes using the 
output data. Concept Island has used CLIP, BioViL, 
and MedCLIP as main models. To compile data from 
individual patches of images into a single global 
representation, apply according to the formulation in 
Eq. (8) [19] [22] and positional encoding maintains the 
integrity of spatial information necessary in later tasks.  

ℎ𝑖𝑚𝑔 =  𝑃𝑜𝑜𝑙(𝐻𝑖𝑚𝑔)    (8) 

Where ℎ𝑖𝑚𝑔is a global image representation, 𝐻𝑖𝑚𝑔 is 

the input medical image, 𝑃𝑜𝑜𝑙(𝐻𝑖𝑚𝑔) is aggregates 

patch embeddings into a single global image. The 
reshaping flattens the image into non-overlapping 
patches. Upon the combination of the text and visual 
attributes, the ultimate calculation of the presence or 
type of cancer is  

 

 

 

 

 

made via the use of incorporating a sigmoid (or 
softmax) layer in case of binary or multiclass cancer 
classification. The text and image features combined 
form a fusion function that enables joint operation 
across modalities, as described in Eq. (9) [22] [33]. 

ℎ𝑓𝑢𝑠𝑒𝑑  =  𝜙(ℎ𝑡𝑥𝑡 , ℎ𝑖𝑚𝑔 )     (9) 

Where 𝜙 is a fusion function (e.g., concatenation, 
attention-based fusion), ℎ𝑓𝑢𝑠𝑒𝑑 is combined text-image 

representation. This layer performs joint reasoning 
over both modalities. Finally, a fusion function is used 
to combine text and image embeddings. This operation 
involves modal multimodal reasoning and maps the 
assembled representation into a single feature space 
for subsequent cancer classification. The fusion 
function is defined in Eq. (10) [21]. 

𝐹 =  𝜎(𝑊. [ℎ𝑡𝑥𝑡 ⊕ ℎ𝑖𝑚𝑔]) + 𝑏     (10) 

Where ℎ𝑡𝑥𝑡 and ℎ𝑖𝑚𝑔 are text and image embeddings, 

⊕ is denotes fusion, e.g., concatenation, 𝑊 and 𝑏 are 

the classification weights and bias, 𝜎(. ) is the activation 

function, and  𝐹 is the final function. 

D. Training process 

The design of the process ensured that the training was 
powerful, flexible, and capable of incorporating new 
skills over time [27]. 

1. Text-Only Models (LLMs) 

To improve them, I utilized labeled data and employed 
the cross-entropy loss function. Based on the length of 
the input and the GPU’s memory size, we maintained 
a batch size of between 16 and 32 vectors.  

The training process used up to 5 epochs, but it was 
interrupted early once the validation loss started to 
increase. To classify skin lesions, Fig. 5 illustrates how 
the overlays of attention facilitate correlations between 
text and visual areas, which enable interpretations of 
textual keywords. In practice, training required 
substantial computing. The multimodal VLMs are 
trained on NVIDIA A100 GPUs in a distributed 
configuration. It requires ~48 hours to converge on both 
TCGA and MIMIC datasets. The text-only variant of 
LLMs trained with a single A100 GPU in ~12 hours. We 
restricted the batch size to 16-32 because the GPU 
memory is not large enough, and the loss function 
stopped early to avoid overtraining. This limitation 
highlights the computational expense associated with 
using multimodal models in hospital environments. Fig. 
6 shows a system that simulates a multimodal cancer 
diagnosis pipeline that combines dermoscopic image 
features and text clinical embedding. By fusing 

 
(a) Benign dermoscopic skin lesion image 

samples 

 
(b) Malignant dermoscopic skin lesion image 

samples 

 
(c) Intermediate dermoscopic skin lesion 

image samples 

Fig. 5. (a) (b) and (c) Visual-Textual attention 
Overlay based Multimodal Skin Lesion 
Diagnosis. 

 

Algorithm. 1. Multimodal Feature Encoding 

Input: Medical image I, Clinical text T 

Output: Visual region embedding R,  

              Text embedding Tembed 

1: Divide I into patches P = {p1 … pn} 
2: For each pi ∈ P  

2.1: Compute patch embedding  

                          vi ← ViT (pi) 

2.2: Apply GAT on patch embedding  

R ← GAT (v1 … vn) 
3: Tokenize T into sentences S = {s1 … sm} 

4: For each si ∈ S  

4.1 Encode tokens  

      h_token ← ClinicalBERT(si) 

5: Encode full document:  

h_doc ← Long former (T) 

6: Construct multi-granular text embeddings:                                     
Tembed  ← {h_token, h_sentence, h_doc} = 0 
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similarities based on attention and reasoning, it 
produces explanations for skin lesion images [15], 
which helps in classifying benign, malignant, and 
intermediate conditions with high-resolution overlays 
and explainability. 

2. Multimodal Models (VLMs)  

The developers went through two steps in training the 
VLM. Previously, big batches of data were taught by 
using contrastive loss (InfoNCE) to match images and 
text, either real or artificial. Moreover, MLM and ITM 
tasks also helped me gain skills in how to represent 
information. During this stage, the models became 
more accurate by using categorized images that 
represented cancer. To solve the two objective 
optimization, used cross-entropy loss as well as 
contrastive loss. To better support general learning, the 
team used random cropping, adjusted image 

histograms, jittered stained regions in the images, and  

changed either the order or the language in the text. 
This contrastive objective follows the InfoNCE 
formulation introduced in contrastive predictive coding. 
To ensure stable convergence, a cosine decay learning 
rate scheduler is used in the training process because 
the learning rate is slowly tapered off throughout the 
training steps as indicated. The final multimodal 
probability distribution of cancer classes, as defined in 
Eq. (11) [22] [33] [40]. 

𝒴̂  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓ℎ𝑓𝑢𝑠𝑒𝑑  +  𝑏𝑓 )   (11) 

where 𝒴̂ predicted probability distribution is over 
cancer classes, 𝑊𝑓 and bf are the weights and bias of 

the fusion classification layer, and the function used for 
binary classification (or softmax for multiclass). Fig. 6 
shows a three-stage multimodal deep learning [12] 
pipeline that was drawn to be applied to medical 
images and clinical text analysis. 

Algorithm 1. (Multimodal Feature Encoding) partitioned 
the medical image into patches and tokenized the 
clinical text, giving aligned visual and textual 
embedding. It is crucial to multimodal feature encoding, 
where both image patches and clinical text tokens are 
encoded at a variety of scales (token, sentence, 
document).  

Algorithm 2. (Cross-Modality Alignment and Fusion) 

takes a sum of these embeddings, tests the 
enablement of causal analysis, and, in case it is 
enabled, constructs a graph of causes and creates 
relationships based on it. Otherwise, it makes a direct 
prediction.  It then performs cross-modality alignment, 
i.e., essential to merge visual and textual signals 
beyond simple concatenation, and makes the model 
more efficient with missing or noisy data. 

Algorithm 3. (Causal Reasoning, Classification and 
Explanation) completes the prediction routine, giving a 
target class label and human compassionate 
explanations. It adds to existing classes the view of 
casual reasoning and interpretability. This component 
is original in relation to previous VLM studies, as it 
generates explicit Grad-CAM overlays and text 
keywords of attention to support the diagnosis clearly. 
The proposed framework extends one step further than 

previous VLMs like CLIP and BioViL with a new 
approach to fusion that combines cross-modality 
alignment (algorithm 2) with a causal reasoning head 
(algorithm 3). The design allows end-to-end frame 
explanations using Grad-CAM and attention-based text 
keywords, making the framework an application-ready 

 
Fig. 6. MG-CMRNet Architecture for Multimodal 
cancer Diagnosis. 

 

Algorithm. 2. Cross-Modality Alignment and Fusion 

Input: Visual regions R, Patch embedding vi,  

            Text embedding Tembed 

Output: Fused multimodal representation F 

1: Align tokens to patches:  

       A1← CrossAttention(h_token, vi) 

2: Align sentences to regions:  

      A2 ← CrossAttention(h_sentence, R) 

3: Align document to global visual summary:  

A3 ← CrossAttention(h_doc, Avg(R)) 

4: Concatenate all aligned features:  

Z ← [A1; A2; A3] 

5: Apply transformation:  

F ← ReLU(W · Z + b) =0 
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medical diagnosis tool, rather than a metric-oriented 
benchmarking experiment. The flow is made clear with 
standard flowchart symbols of processes represented 
by rectangles and decision points represented by 
diamonds. Fig.  7 illustrates how the information flows 
as it is processed through feature encoding, fusion, and 
causal thinking to return information in human-
understandable formats. This architecture makes sure 
that the model learns complicated relationships across 

modalities, gaining accuracy and evidence readability 
in medical AI operations. 

3. Training Environment 

Training was done with NVIDIA A100 GPUs, but VLM 
required up to 8 GPUs in a fully distributed 
configuration. They depended on PyTorch, Hugging 
Face Transformers, and MONAI for working on medical 
data from a distance. To install the AdamW optimizer 
and apply learning rate warm-up as well as cosine 
decay. For the LLMs, module was tuned to 2e-5 
meanwhile, the rates were set to 5e-5 and 1e-4, 
depending on the required settings for the other 
models. The loss function that determines the 

optimization of the model is the classification loss 
defined by the cross-entropy between the predicted 
probabilities and the correct labels. The baseline (TF-
IDF + Logistic) regression approach using the standard 
cross-entropy loss, as defined in Eq. (12) [40]. 

ℒ𝐶𝐸 =  − ∑ 𝒴𝑖
𝑘
𝒾=1 𝑙𝑜𝑔(𝒴̂𝒾)    (12) 

 

where ℒ𝐶𝐸 is cross entropy loss, 𝑘 is the number of 

classes, 𝒴𝒾 is the true label (one hot encoded), and 𝒴̂𝒾 

is the predicted probability for class 𝒾. This is a 

standard loss function used in classification tasks to 
penalize incorrect predictions. This scheduler gradually 
decays the learning rate in a cosine manner to improve 
convergence. 

E. Evaluation metrics 

The evaluations included the use of a broad system to 
compare different cancer detection situations. 

1. Standard Classification Metrics 

To measure the accuracy of the outcomes using 
accuracy, precision, recall, and F1-score. The 
accuracy of the model for predicting cancer and 
detecting cancer  

was evaluated using precision and recall 
measurements. It makes sense to apply the F1-score, 
as it combines recall and accuracy well for cases where 
the data is not equally represented. Fig. 8 shows a 
comparative framework of baseline models and a multi-
granular textual description generation pipeline of 

 
Fig.  7.  A three stage multimodal deep learning 
architecture which can process both a medical 
image and clinical written material,. The pipeline is 
composed by (1) Multimodal Feature Encoding an 
embedding extraction and alignment network of 
patches and texts, (2) Cross-Modality Alignment 
and Fusion an optional step of causal reasoning, 
and (3) Causal Reasoning, Classification and 
Explanation to make predictions and interpretable 
textual and visual interpretations. 

 

Algorithm. 3. Causal Reasoning, Classification, 
and Explanation 

Input: Fused features F, Target class y 

Output: Prediction 𝑦̂, Explanations:  

             (Text_Keywords, Image_Regions) 
1: If causal head is enabled: 

1.1: Build causal graph G_causal from F 

1.2: Infer relationships via differentiable graph 
inference 

1.3: Extract top influential regions & terms 
2: Predict class: 𝑦̂ ← Softmax(F) 

3:  Compute total loss:  

L_total ← L_CE + λ1L_contrastive + λ2 
L_causal 

4:  Optimize with AdamW 

5: Visual explanation:  

5.1: Apply Grad-CAM to  

I → Image_Regions 
5.2: Extract terms from attention  

weights → Text_Keywords 

6: Return (𝑦̂, Text_Keywords, Image_Regions) =0 
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cancer detection. On the left, baseline models perform 
ROI (Region of Interest) localization, metadata fusion, 
coarse captioning, and medical knowledge retrieval in 
classification, QA reporting, or mask/bounding-box 
creation. A Multimodal Large Language Model (MLLM) 
is prompted on the right to generate multi-granular 
textual descriptions of the ROI and image data. 
Performance-based metrics (AUC-ROC and Precision) 
are applied to the generated descriptions of such 
models as BioBERT, BioViL, and CLIP variants, which 
support explainability and fine-grained clinical 
explanations.  

2. AUC-ROC  

It was used to figure out how efficiently the model 
divided students into different groups. A comparison 
between the true positive rate and the false positive 
rate was created, which helps distant learning in cancer 
cases where cancer is not commonly found. Left: 
Original image. Center: Attention weights from the ViT 
encoder. Right: Grad-CAM overlay highlighting regions 
strongly influencing malignancy prediction. Red 
indicates high contribution. 

3. Mechanisms for Explaining a Set of Models 

To ensure trust and openness at the hospital, ways to 
make reads simpler for nurses were included. Using 
Grad-CAM, we identified areas in images that impacted 
the final outcome given by the network. LLMs used self-
attention weights to identify which keywords from the 
case were most significant (those were “atypical lesion” 
and “malignant mass”). Furthermore, analysis of these 
maps revealed that both visual and textual embedding 
roughly agree in their latent space [20]. To measure the 
influence of each area of an image over the final 
prediction, the Grad-CAM method is used to describe 

in order to quantify model interpretability. In the binary 
classification tasks, the output is mapped to probability 
space using the sigmoid function in Eq. (13) [40].  

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  − log
𝑒𝑥𝑝(

𝑠𝑖𝑚(ℎ𝑚𝑔𝑖,ℎ𝑡𝑥𝑡)
𝒯

⁄ )

∑ 𝑒𝑥𝑝(
𝑠𝑖𝑚(ℎ𝑚𝑔𝑖,ℎ𝑡𝑥𝑡

(𝑗))

𝒯
⁄ )𝑁

𝑗=1

 (13) 

Where 𝑠𝑖𝑚(ℎ𝑚𝑔𝑖 , ℎ𝑡𝑥𝑡)the cosine similarity between a 

pair of positive image texts pair, 𝑁 is the number of text 

samples, 𝒯  is a temperature controlling parameter, 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 is the contrastive loss (infoNCE). The paired 

image and text embeddings are optimized using the 

infoNCE contrastive loss, as formulated in Eq. (14) [22] 
[40]. 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝛼𝐿𝐶𝐸 + 𝛽𝐿𝑐𝑜𝑛     (14) 

Where 𝐿𝑡𝑜𝑡𝑎𝑙 is a total loss, 𝛼 𝑎𝑛𝑑 𝛽 are weight to 

balance classification and contrastive loss. To measure 
the effectiveness of each modality or an encoder, the 
difference in AUC is calculated with a formula in Eq. 
(15) [25] which illuminates the contribution level of 
every component to a model’s performance. 

ℒ𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘 
𝑐 𝐴𝑘

𝑘  +  ∑ 𝛽𝑡
𝑐𝑤𝑡̃𝑡 )   (15) 

Where ℒ𝑐 is a multimodal class discriminate for class c, 

Ak is the activation map from the kth feature channel, 𝛽𝑡
𝑐 

is importance weight of term 𝑡 for class c. Here 𝛼𝑘
𝑐  is 

the importance weight computed via backpropagation. 
The resulting map 𝑤̃𝑡  helps visualize which parts of the 

image most influenced the model’s prediction. The full 
and reduced models compare the effect of the ablation 
of the modality as a metric of that effect, as defined in 
Eq. (16) [24] [25]. 

∆𝑀𝑒𝑡𝑟𝑐 = 𝑀𝑒𝑡𝑟𝑖𝑐𝑓𝑢𝑙𝑙 − 𝑀𝑒𝑡𝑟𝑖𝑐𝑎𝑏𝑙𝑎𝑡𝑒𝑑  (16) 

 
Fig. 8. Transformer based multi-granular interpretability for a Chest cancer histopathology slide. 
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Where ∆𝑀𝑒𝑡𝑟𝑐 performance difference when compare 

the full multimodal model to an ablated version,  
𝑀𝑒𝑡𝑟𝑖𝑐𝑓𝑢𝑙𝑙 is the performance (e.g., AUC) with all 

modalities, and 𝑀𝑒𝑡𝑟𝑖𝑐𝑎𝑏𝑙𝑎𝑡𝑒𝑑 is the performance after 

removing one (e.g., image or text). This indicates how 
much each input source contributes to model accuracy. 

4. Cross-Validation 

5-fold cross-validation was used to avoid problems with 
performance due to various splits of the data. As a 
consequence, our findings strengthened and could be 
used for others. 

 

IV. Results 

In this section, we discuss in detail the proposed 
framework. We also compare with the existing 
unimodal and SOTA models and obtain results in terms 
of diagnosis accuracy and interpretability. 

A. Baseline models 

In addition to TF-IDF combined with logistic regression 
and a shallow CNN [12], we performed a stronger 
baseline to ensure fairness. These include (i) a pre-
trained ImageNet-50 image-only classification, and (ii) 
a non-adopted BioBERT on text-only classification. 
The models offer more competitive unimodal reference 
points, closing this gap with the traditional approaches 
and more modern multimodal transformers. The 
baseline model of logistic regression performs cancer 
probability prediction by applies the weight learned 
(together with the input vectors) and subsequent 
application of a sigmoid function. 

B. Quantitative results 

We evaluated both LLM-based and VLM-based models 
used for cancer classification problems. The datasets 
include clinical text (MIMIC), histopathology images 
(TCGA), and matched datasets [14]. All reported 
figures are obtained by averaging results over 5-fold 
cross-validation with 80/10/10 train/validation/test 
proportions. Learning rates converged to 2e-5 on text-

only models and 5e-5 on multimodal, and in both cases 
stopping was used with a threshold of 5 epochs to 
avoid overfitting. AdamW was applied throughout 
experiments critically, the AUC values are reported and 
reproduced in experimental conditions and not hand-
picked out of the prior literature. Table 3 reports mean 
± standard deviation to confirm no unstable results. 
Overall, for cancers, the multimodal models based on 
transformers outperformed unimodal methods. BioViL 
performed the best in lung [37] cancer classification 
(AUC = 0.92 ± 0.01), verifying such prior claims in the 
pipeline. To evaluate diagnostic quality, it was 
computed with classification measurements like 
accuracy, precision, recall, F1-score, and AUC, using 
the following equations: Eq. (17) – (20) [20] [37]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
    (17) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
   (18) 

 𝐹1 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)     (19) 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0
   (20) 

Eq. (17), (18), (19), respectively [37] and (20) [20] [37] 
are essential for evaluating model performance, 
particularly when dealing with imbalanced datasets in 
medical diagnostics.Here, 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝑎𝑛𝑑 𝐹𝑁 

represent true positives, false positives, true negatives, 
and false negatives respectively, 𝑇𝑃𝑅 𝑎𝑛𝑑 𝐹𝑃𝑅 are 

fraction of predicted positive and negative cancer 
cases, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 fraction of predicted positive cancer 

cases, 𝑅𝑒𝑐𝑎𝑙𝑙 fraction of actual positive cancer cases, 

 𝐹1 is harmonic mean of precision and recall, and 𝐴𝑈𝐶 

is area under the ROC.  These metrics are crucial for 
evaluating diagnostic accuracy and robustness, 
especially in class-imbalanced settings typical of 
medical data. Table 3 summarizes in detail the overall 
performance of various unimodal and multimodal 
models on cancer types and the gains achieved by the 
able combination of visual and textual modalities.   

C. Reproducibility Statement 

Table 3. Comparative Performance Summary of Unimodal and Multimodal Models. 

Model Input Type Cancer 
Type 

AUC-
ROC 

Precision Recall F1-Score p-value (vs. 
TF-IDF+LR) 

TF-IDF + LR Text-only Lung 0.76 0.73 0.70 0.71 ±0.02 

BioBERT Text-only Breast 0.87 0.85 0.83 0.84 ±0.01 

ClinicalBERT Text-only Colon 0.85 0.82 0.81 0.81 ±0.01 

BioViL Text+Image Lung 0.92 0.90 0.88 0.89 ±0.01 

CLIP (Tuned) Text+Image Colon 0.91 0.88 0.87 0.87 ±0.01 

MedCLIP + BERT Text+Image Breast 0.90 0.87 0.85 0.86 ±0.01 

ViT + ClinicalBERT Text+Image Breast 0.90 0.88 0.86 0.87 ±0.01 
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The proposed ViT + ClinicalBERT model and TF-IDF + 
Logistic Regression model are benchmarked, then 
compared to BioBERT, ClinicalBERT, and the review 
in a 5-fold cross-validation, with the implementation 
details discussed in the literature. Results on larger-
scale pre-trained models like BioViL, CLIP, and 
MedCLIP are cited in the publications (2022, 2023) 
originally due to required computation resources 
outside the organization. To be equitable, the dataset 
selection and metrics used to report should match 
those published by the same in the literature. 

D. Qualitative results 

This way, the expert could check the expert’s approach 
to the model. When looking at pathology reports with 
LLMs, they identified a mass or abnormal cell type as 
a significant area in most cases. They accomplished 
this by using marks on the pictures to guide and 
connect them back to words from the reports such as 
mentions of “speculated lesion” and “hazy opacity”. The 
following diagram illustrates the accuracy of doctors in 
identifying three benign and three malignant nodules. 
For all the cases, we pro- vide the outcomes that were 
produced by Sybil, Deep Lung (DeepIPN) and the 
approach we developed. As we have seen, the results 
suggest that the model is more certain about cancer 
and does not label benign nodules as cancer. The 
complete and reduced models are experimented with 
to determine the effect of excluding one modality, such 
as an image or text, on overall performance. The AUC 
difference is as a result of the contribution of each 
modality towards the diagnostic accuracy. 

E. Statistical Analysis 

To evaluate the strength of results, we calculated 95% 
confidence intervals (Cis) of all AUC-ROC values using 
bootstrap (1000 samples). For instance, BioViL scored 
0.92 (95% Ci: 0.91 0.93) in detecting lung cancer 

versus 0.85 (95% CI: 0.84 0.86) of ClinicalBERT. The 
pairwise ROC analyses using the DeLong test showed 
that the improvement in the models of GP over the 
unimodal models was significant at p<0.01. Similarly, 
error distribution between models was not due to 
chance because McNemar for classification outcomes 
showed significance (p<0.05). These results support 
the fact that the improvements are realized both 
consistently and reliably. 

F. Ablation study 

The impact of every component and modality was 
tested by using ablation experiments [25]. If images 
were no longer provided to VLMs for cancer detection, 
accuracy scores decreased by 7% to 10%. Removing 
BioBERT/ClinicalBERT and using only BERT resulted 
in a 5% decrease in overall performance. It illustrates 
that using medical data helps the model connect terms 
and expressions used in medicine. The Grad-CAM 
weights of importance are computed to interpret the 
predictions of the model and show which visual areas 
have contributed the most. The efficiency of each 
modality is quantified by the amount of contribution of 
each part to model performance with Grad-CAM-based 
feature importance and attention maps. 

 

V. Discuss 

Multimodal models performed better than unimodal 
models, but challenges remain. Rare cancers (e.g., 
ovarian, pancreatic) had reduced AUCs due to limited 
sample sizes. In which case, few-shot, transfer 
learning, or synthetic augmentation is applied. Modality 
dropout or simulated label noise robustness checks 
revealed that cross-modality alignment mitigates 
performance loss. Interpretability was clear. Grad-CAM 
heat maps and attention fell at lesions labelled by 
radiologists, qualitatively indicating support of 

 
Fig. 9. Vision language alignment in multimodal cancer diagnosis. 
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accountability and explainability. In terms of 
deployment, the model takes 8 A100 GPUs (~48 h) to 
train and ~0.2 s (LLM) and diagnostic accuracy of 
various types of cancer. These numerical results 
support the claim that joint reasoning in both the text 
and image modalities produces statistically significant 
improvements in diagnostic accuracy, precision, and 
recall. 

 A. Interpretation of results 

The combination of visual and textual information in 
multimodal models allowed them to achieve strong 
performance [26]. Using VLMs, both visual and written 
descriptions of lung cancer could be aligned, leading to 
more accurate predictions. Because the model 
combines text and images, it can notice hidden details 
that could be overlooked when only using one medium. 
The proposed multimodal framework has significantly 
better performance compared to unimodal baselines 
Table 3. In particular, BioViL achieved an AUC-ROC 
value of 0.92 ± 0.01 in lung cancer, which exceeds the 
text-only BioBERT (AUC = 0.87) and ClinicalBERT 
(AUC = 0.85). Similarly, the CLIP-based multimodal 
fusion of colon cancer achieved 0.91 AUC with a p-
value of less than 0.01 as compared to the baseline TF-
IDF + LR (0.76 AUC). Further, the MedCLIP + BERT 
setup achieved an AUC-ROC of 0.90 in detecting 
breast cancer, which means the combined 
representation of radiology images and clinical text can 
additionally contribute to increased ~1.2 s (VLM) per 
case to suggest feasibility for large hospitals, or it 
requires distillation and edge optimization to run in 
smaller clinics. 

B. Comparison with existing approaches 

Originally, text or image-based systems failed to deliver 
accuracy in several major aspects. With the help of 
multimodal transformers and combining them with both 
modalities, physicians could diagnose patients more 
accurately [24]. The left chest radiograph with Grad-
CAM overlay. Right Text snippet with model-
highlighted keywords (“hazy opacity,” “speculated 
mass”). Arrows represent inferred alignment between 
visual features and textual cues. In order to know what 

each modality and individual domain-specific encoder 
contributes, in the Table 4, an ablation study shows the 
change in AUC-ROC when a particular component is 
removed, or replaced by a randomly initialized one.  
Fig. 9 illustrates the evaluation of VLMs for cancer 
detection and their clinical relevance. It highlights that 
combining visual and textual information leads to 
significantly better performance, particularly by aligning 
image features with written descriptions, which 
improves prediction accuracy. Compared to traditional 
approaches, integrating text and image modalities 
enhances diagnostic precision. However, challenges 
such as data quality limitations, computational 
demands, and resource constraints can impact the 
practical use of VLMs. Despite these challenges, the 
models demonstrate strong potential for enhancing 
early cancer detection in clinical settings. Although it 
has high accuracy, there are limitations. First, 
multimodal transformers require high computational 
resources (~48 hours on 8xA100 GPUs). Second, the 
utilization of only Western-centric repositories (TCGA, 
MIMIC) limits the generalizability. Third, despite the 
enhanced usage of Grad-CAM, interpretability remains 
opaque for clinical applications. Finally, model fairness 
and hospital adaptation are also confirmed to prevent 
demographic or modality bias. 

C. Clinical implications 

With the vision language AI, doctors could identify 
cancer in its early stages more successfully and with 
less pain for patients [33]. Before using new findings in 
healthcare, they must be carefully investigated and 
regulated, and healthcare professionals should be 
certain about how the models function. This helps to 
support radiologists and pathologists as it relates 
image characteristics with clinical sections, and it 
remains capable of providing interpretable and 
evidence-based diagnoses. It facilitates the detection 
of cancers earlier and less invasively, which helps in 
screening activities within less-resourced settings. 
However, its use in healthcare must be clinically 
validated, ethically controlled, and monitored to avoid 
misuse or diagnostic bias. The multimodal AI could 

Table 4. Impact of Modality and Encoders on Breast Cancer Detection. 

Configuration Cancer Type AUC-ROC ∆AUC vs. Full Model p-value (vs. Full Model) 

ViT + ClinicalBERT 
(Full Multimodal) 

Breast 0.92 0.00 - 

VLM only (no text 
encoder) 

Breast 0.84 -0.08 ± 0.01 

LLM only (no image 
encoder) 

Breast 0.86 -0.06 ± 0.01 

General BERT 
instead of BioBERT 

Breast 0.87 -0.05 ± 0.01 
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serve as an assistant triage and reporting system used 
by physicians in future hospital operations. 

VI. Challenges and Future Work 

The proposed framework shows limitations. The 
variation of data across institutions and modalities 
limited generalization. The interpretability remains 
limited, as black-box predictions are not often suitable 
for clinical adoption. The computation cost acts as a 
barrier to the application of this method in resource-
limited hospitals, and a performance deficit compared 
to state-of-the-art (SOTA) models is evident in Table 5. 
The solutions to major challenges in multimodal cancer 
analysis include the issue of data heterogeneity, 
interpretability, computational cost, and the 
performance gap of SOTA models. Federated learning 
models allow learning to take place across multiple 
institutions without violating privacy or compromising 
security as opposed to centralizing sensitive 

information. Multimodal Grad-CAM, a form of 
explainability, can be used to produce attention heat 
maps that assist with auditing the model and improve 
clinical trust. Regarding the cost of our computation, it 
is possible to have lightweight VLMs with efficient 
parameter fine-tuning, pruning, and knowledge 
extraction to lower the computational cost without 
compromising accuracy. In rare cancer cases, 
involvement such as synthetic data augmentation with 
GANs or distribution models in combination with 
domain adaptation can be used to stabilize the 
distributions of the tumor type and enhance the 
classification of infrequent cancer variants. Although 
these achieved the SOTA gap relative to high-
performance models such as CHIEF (2024, AUG 0.94), 
this means that more effective fusion strategies need 
to be designed specifically to be used in cancer 
situations.

 

VII. Conclusion 

This proposal aimed to develop and evaluate a VLM 
transformer-based framework of multimodal cancer 
diagnosis by integrating clinical text and medical 
images using transformer-based encoders and fusion 
approaches. The experimental analysis of TCGA, 
MIMIC-III/IV, and CAMELYON datasets validated that 
the proposed models have significantly higher 
performance in comparison to unimodal baselines by 
achieving an AUC-ROC value of 0.92 with p < 0.01 and 
minimizing diagnostic error by 10–15%, which 
validates the advantages of multimodal integration in 
strong and clinically relevant cancer prediction. 
Although the models are mainly based on publicly 
available, Western-centric datasets, this can limit their 
generalizability to various populations. The results 
demonstrate that vision language AI can enhance 
diagnostic accuracy, interpretability, and workflow 
efficiency in oncology. Future work will focus on 
increasing the diversity of datasets, domain adaptation 
to rare cancers, and creating lightweight, privacy-
preserving, and federated multimodal learning systems 
that are deployed in clinical practice ethically and 
transparently, and on deployments in real-world 
practice. 
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