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Abstract Finding and treating cancer as soon as possible help patients get better outcomes. Patients
requiring imaging or biopsy tests sometimes find it challenging to access them because these procedures
are often limited by their high cost and availability in clinical settings. Recent Al methods, particularly those
involving deep learning, can address these problems and significantly enhance the process for detecting
cancer, offering greater efficiency and scalability. In this context, LLMs and VLMs are considered leading
solutions for trying to make sense of multimodal variables within Al-driven healthcare systems. Although
LLMs are strong at working with unstructured, clinically related text data, they have not often been used
for patient assessment beyond descriptive or summarization tasks, by combining images and descriptions,
along with both structured and unstructured data. The VLMs allow doctors and medical researchers to
catch cancer symptoms from multiple angles. In this work, we study both LLMs and VLMs in cancer
detection, analyzing their architectures, learning mechanisms, and performance on various datasets, and
identifying directions for expanding multimodal Al in healthcare. Our results indicate that combining these
two data types enhances how accurately we are able to diagnose patients across different types of cancer.
Our studies in MIMIC-IIl, MIMIC-IV, TCGA, and CAMELYON 16/17 datasets revealed that multimodal
transformer models significantly improve the accuracy of diagnosing biopsy results. In particular, BioViL
achieves an AUC-ROC of 0.92 for detecting lung cancer, whereas CLIP Fine-tuned achieves a similar result
of 0.91 for colon cancer detection.

Keywords Cancer detection; Vision-Language Models; Large Language Models; Transformers; Clinical
data, Histopathology; Medical Imaging; Multimodal Al.

l. Introduction

Cancer remains one of the leading causes of mortality
worldwide, with an estimated 19.3 million new cases

case of early tumor detection, and also highly relies on
office interpretation [4]. The efficient standard is
considered to be histopathological biopsies, which are

and almost 10 million deaths in 2020 (as per the
International Agency for Research on Cancer (IARC)
and the World Health Organization (WHO) [1]. It is
estimated that these numbers will be increased by
nearly half in 2040, which not only make cancer one of
the most important health-related issues but also a
significant economic and social burden. Cancer care is
estimated to cost the economy USD 1.16 trillion each
year, with inconsistent effects on the low- and middle-
income nations, where resources to aid diagnosis are
limited [2]. Timely and accurate diagnosis is one of the
most effective measures to increase survival rates,
optimize treatment courses, and decrease the number
of financial and emotional costs imposed on patients
and medical services. Conventional diagnostic
methods remain incomplete despite decades of
investigation. Radiological imaging, like CT, MRI, PET,
and mammography, is capable of essential and
practical evaluation of tumors but may not work in the

aggressive and prone to inter-observer variation [5].
Biomarker testing provides molecular information that
is not globally applicable to all cancer subclasses [6].
The challenges make it apparent that the pressing
need in the diagnostic solutions is for them to be
scalable, available, and capable of combining various
sources of clinical data. Artificial Intelligence (Al) is a
recent strategy in the healthcare sector, as it suggests
advanced approaches to computerize and improve
cancer diagnostics [39]. Although the initial
applications of Deep Learning (DL) show encouraging
outcomes in unimodal tasks, such as skin cancer and
histopathology slide analysis [7] [8], the systems are
unimodal and do not provide the broadened
capabilities of Al due to their limited scalability on large
and heterogeneous datasets [9]. These innovations
create the possibility of combining medical text and
images, among other forms of data, in structures for
cancer detection.
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Though, regardless of these developments, there are
still a number of challenges. First, the generalization of
most multimodal Al systems is incorrect because
cancer data in different institutions, patient groups, and
imaging modalities are heterogeneous [23]. Second,
the affected data silos are because medical datasets
are disjointed and constrained by privacy laws, which
hamper large-scale training [24]. Third, a significant
obstacle is interpretability; models are very diagnostic,
but clinical practice normally requires clear decision-
making mechanisms to develop trust and implement
them in clinical settings [25]. Additionally, scalability is
also an essential issue, as transformer-based models
[21] can be very resource-intensive and challenging to
deploy in healthcare systems with limited resources
[26]. Finally, such ethical and regulatory concerns as
bias, fairness, and patient privacy are still in the
process of clinical integration, and the question of
accountability with safety in practical execution [27, 28].

This paper makes the following contributions:

1. Evaluating transformer-based LLMs for cancer
detection in clinical texts.

2. Evaluating VLMs for multimodal (text + image)
cancer diagnosis.

3. Analyzing the diagnostic of Vision Language
integration compared to unimodal methods.

4. Discussing challenges such as model
interpretability, multimodal fusion, and clinical
deployment.

In particular, we examine representative models
including BioGPT-VL, LLaVA-Med, and RadFM,
demonstrate their capabilities for cancer classification,
report generation, and early disease detection [5]. We
also highlight that these models overcome some
limitations of traditional methods while acknowledging
open challenges such as data heterogeneity,
generalization, and clinical standardization [10]. This
paper intends to prove the transformer power of
multimodal Al systems in the diagnosis of cancer by
critically analyzing the state of the art LLMs and VLMs.
The work does not only benchmark the existing models
but also outlines the existing gaps in the work, which
need to be filled in to achieve adequate, safe, reliable,
and fair implementation of these technologies in the
real-life oncology environment.

Il. Related Work

The most current developments in Al technology have
created a new horizon in cancer detection, especially
in the case of the combined use of VLMs [23] and
transformer-based LLMs [1]. The conventional
diagnosis methods, although they are significant, are
usually limited in terms of their sensitivity, reliability,
and applicability. Joint processing of medical images
and clinical text, with the help of multimodal Al systems,
allows for a more effective and timely diagnosis of

cancer [36]. VLMs bridge the gap between visual
information and textual expertise, while LLMs enhance
the interpretation of complex medical narratives. In
combination, the technologies transform the game of
oncological diagnostics with powerful, situation-aware,
and automated decision support.

A. Traditional Cancer Detection Methods

Medical imaging, histopathology, and biomarker tests
form the foundation of cancer diagnosis, which is
inherently limited. Imaging modalities, such as CT,
MRI, PET, and mammography, provide invaluable
spatial information but often fail in the early detection of
tumors, requiring expert interpretation [30]. The culture
histopathological method is regarded as an important
standard. However, it is invasive, time-consuming, and
prone to inter-observer variability [13] [28]. The test of
biomarkers (e.g., PSA, HER2, and CA-125) also
provides information at the molecular level but is not
universally applicable across different types of cancer
[30]. The initial deep learning work, such as that by
Esteva et al. [15], had already shown that
dermatologist-level accuracy in skin cancer
classification is possible with images, and Coudray et
al. [12] and Campanella et al. [13] had provided
evidence that CNNs can be used with histopathology
slides. Nevertheless, these unimodal approaches
cannot describe the multifaceted nature of cancer data.

1. Imaging-Based Diagnostics

Today, visual tests called imaging are the main tool
health professionals use to identify cancer. To identify
irregular cell growths and measure the progress of a
disease, doctors utilize various imaging technologies,
including CT, MRI, |ultrasound, PET, and
mammography. Doctors and specialists use CT scans
and mammograms to find lung cancer and colorectal
cancer and to identify breast cancer [30]. Despite
requiring radiologists’ knowledge, these techniques
commonly have difficulty finding tumors that are just
starting or are small.

2. Histopathology

A biopsy is necessary for pathologists to examine the
tissue under a microscope as part of regular
histopathological analysis. Though direct microscopy,
doctors can check for cell problems at the same time
as they spot, classify, and identify the main forms of
each type of tumor. Although it takes time and is
considered the most reliable method, cancer diagnosis
[1] [3] through biopsy relies heavily on the expertise of
pathologists. The differences in decisions between
experts make it hard to reach consistent assessments
and outcomes [4] [5] in many cases.

3. Biomarker Testing

Doctors can identify cancer and track its advancement
through biomarker examination of blood tests along
with urine collection or tissue samples using proteins
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and hormones together with genetic mutations. Three
widespread biomarkers used to detect cancer exist
within the medical field: PSA (Prostate-Specific
Antigen) for prostatic malignancies and CA-125 for
ovarian cancer, together with HER2 expression
analysis for breast cancer pathology [1]. Many useful
biomarkers fail to produce either precise detection
methods or sensitive detection capability which results
in incorrect positive readings and early cancer
identification failures. Not all cancers possess
established biomarkers that receive universal
acceptance by the medical community. As shown in the
Fig. 1, the pipeline of the end-to-end deployment of pre-
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trained medical VLMs in clinical decision support. It is
provoked by the pre-training on the multimodal clinical
data (images, text, and patient records) and proceeds
with the assessment of performance on specific
datasets. This is followed by optimization, contrastive
learning [9], and modular fine-tuning strategies so as to
achieve the best accuracy that the model can attain.
Model evaluation is a combination of human expert
evaluation and quantitative evaluation (e.g., BLEU,
ROUGE) [31]. Finally, the model would be deployed
into the clinical pathways, generating actionable
outputs tailored to patient context and physician orders.
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Fig. 1. Conceptual overview of the VLM pipeline for cancer diagnosis. (a) Pre-training using multimodal
clinical inputs. (b) Evaluation on benchmark datasets (e.g., TCGA, MIMIC). (c) Model optimization
strategies including contrastive and supervised learning. (d) Quantitative and qualitative performance
evaluation (e.g., AUC, Grad-CAM maps). (e) Clinical deployment for diagnostic support.

B. Natural Language Processing in Healthcare

Electronic Health Records (EHRs), discharge
summaries, and pathology notes have been analyzed
to a wide extent using Natural Language Processing
(NLP). The transformer-based models, such as
BioBERT [2], ClinicalBERT [3], and PubMedBERT,
largely improved text mining in biomedicine by relying
on domain-specific corpora such as PubMed and
MIMIC datasets [16] [17]. Peng et al. [4] showed that
transfer learning is effective in biomedical NLP. These
models help in extracting, detecting relations in, and
automated coding of data, and are used in oncology,
such as cancer report type and adverse event
detection. Recent reviewers [29] highlight the
application of NLP in the pipeline of multimodal
oncology, especially in conjunction with imaging data.

1. Applications of NLP in Clinical Settings

In the healthcare field, NLP assists in supporting
various operations through its diverse applications. It

enables the identification of important medical entities,
such as diseases, medications, procedures, and
symptoms, from clinical narratives. Then provide
important patient information that suggests diagnoses
and indicates prohibited use cases for medical
personnel. In addition to its clinical function, NLP can
also be used to process free-text medical reports into
administrative ICD or SNOMED codes, which are
necessary for  reimbursement, along  with
administrative processing. Through the history of
patients, the health specialists evaluate the risks of
disease development chances and detect possible
healthcare complications. Moreover, a hospital report
integrated with the public health surveillance system
can support the real-time detection of diseases, as well
as adverse drug reactions. Then improving the care of
patients and overall awareness of the healthcare
system.

2. Advancements in Contextual NLP

Manuscript received July 8, 2025; Revised October 20, 2025; Accepted October 25, 2025; date of publication October 30, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i2.652

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1322


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i2.652
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1320-1339

e-ISSN: 2656-8632

Clinical NLP underwent diverse transformation through
deep learning [12] and contextual embedding, which
led to the development of word2vec, followed by GloVe
and transformer-based models that include BERT [1].
These models read semantic meaning from text
context therefore they function at a higher performance
level with complex clinical texts. The pre-training
process of medical literature and Electronic Health
Records on BioBERT [2], ClinicalBERT [3], and Blue-
BERT leads to improved domain accuracy. Modern
healthcare models show effectiveness in recognizing
medical conditions and drug-illness relationships in
addition to their ability to condense detailed clinical
documentation. Interpretation across the entire
healthcare system becomes accessible because
enhanced medical terminology understanding links
ontologies between UMLS, RxNorm and SNOMED CT.

C. Large Language Models in Medicine

GPT-4, BioGPT, PubMedBERT, and MedAlpaca are
other LLMs that transform the field of text in medicine
by allowing zero-shot and few-shot reasoning
mechanisms [5] [24] [25]. BioGPT (2022)
demonstrated its current performance in medical QA
and cancer-specific entity extraction, while the Med-
PaLM (2023) platform expanded instruction tuning to
meet medical reasoning standards. The MedAlpaca
(2023) system became an open-source and lightweight
medical LLM for clinical tasks. The scalable DL on
EHRs introduced by Rajkomar et al. [5] earlier formed
the basis of the present-day applications of LLM. Gupta
and Lin [34] also raised difficulties, and it was
demonstrated that even when presented with false
assumptions when asked a question by a patient, LLMs
do not produce accurate reactions. Although LLMs are
powerful in medical text analysis, they can, by design,
only be unimodal, which requires multimodal
extensions. The dedical training of these models
requires broad biomedical data retrieved from PubMed
sources combined with MIMIC-Ill [16] records and
clinical trial data until they develop specialization for
particular medical applications. As a result, they excel
in following medical texts, enabling us to find diagnostic
and therapeutic agents, genetic information, and
pharmaceutical substances in clinical texts through
Named Entity Recognition (NER). In addition, relation
extraction methods reveal meaningful relationships,
such as drug-disease, gene-disease, or treatment
response relationships, and enhance clinical
awareness.

The NLP system is used to triage patient messages
with categorized diagnostic regions in written records
and automated, summarized medical reports, and
answer questions to address patient needs.
Additionally, medical system agents utilize past
information processing with NLP algorithms to
calculate the likelihood of disease comorbidity,

including the association between sepsis, diabetes,
and the risk of cancer, which can provide predictive
analysis and inform proactive care. GPT-4 achieves
effective processing of extensive medical documents to
help doctors generate diagnostic information and
treatment sequences using the few-shot learning
approach. Specialized training for general purpose
LLMs becomes necessary because healthcare
language includes complex structures and high risk
operational zones. The implementation of GPT-4 for
clinical use faces three main implementation hurdles
because of its hallucinatory behavior together with
regulatory requirements and explainable system
expectations. Fig. 1 is a Comprehensive Multimodal
cancer Detection [32] Pipeline whereby a text and
image [29] encoder (e.g., BioBERT, ClinicalBERT, and
ResNet-50) is incorporated to produce joined
representations.

Fig. 1 task of training such an embedding is to
categorize the cancer with contrastive and cross-
entropy loss. It also shows the key clinical issues, lying
in the heterogeneity of information, interpretability, and
the necessity to get models that could be explained,
which could be further used as Grad-CAM, to help in
early detection and evidence-based clinical decision
making. The system fuses image features (e.g.,
histopathology or radiographs) and textual reports
(e.g., pathology or clinical notes) through a dual-
encoder architecture followed by joint reasoning via
cross-attention or contrastive [40] learning.

D. Vision Language Models In Medicine

Vision-Language Models (VLMs) are a type of text-
visual model that allows joint reasoning on radiology
images, histopathology slides, and patient notes (Fig.
2). Computer-assisted image-text CLIP [6] has been
adapted into medical practices. Its domain extension,
MedCLIP [8], enhanced zero-shot classification and
image report retrieval error. GLoRIA [7] employed
hierarchical multimodal learning by mapping textual
clinical concepts to local representative image regions,
whereas BioViL [11] maximized radiology-specific
vision-language pre-training. More recently, CHIEF
(2024) reached state-of-the-art pan-cancer detection
with an AUC ~0.94 and showed that multimodal fusion
can be used to achieve state-of-the-art [24]. A
transformer framework utilizing multimodal oncology, in
addition to imaging and text, was introduced by Cai et
al. [24], known as DeePathNet, emphasizing the
significance of multimodal data integration with
pathways in cancer. However, challenges persist.
Vision-language systems are  computationally
expensive and are usually trained on biased datasets.
Multimodal oncology frameworks were reviewed by
Yang et al. [28] and Waqas et al. [29], with the focus on
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Fig. 2. Overview of the multimodal cancer detection system based on vision-language models (VLMs).

The heterogeneity of the data, its interpretability, and
equity. Yang et al. [36] identified the problem of bias,
as they discovered that VLM outputs had demographic
differences, whereas Clusmann et al. [35] established
that oncology-focused VLM had prompt injection
vulnerability. These articles point to the fact that VLMs
can be highly diagnostic, but such aspects as
robustness, explainability, and clinical safety are still
problematic.

1. Popular VLMs in medicine

Trained initially on large-scale natural image to text
pairs, Contrastive Language Image Pre-training (CLIP)
[6] has been reused for clinical work, but it has
interpretability challenges. GLoRIA [7] uses
hierarchical VLM multimodal learning to connect
textual clinical entities to attend to specific image
regions and provide a localization in radiology. BioViL
[11] has radiology-specific vision language pre-trained
models designed and trained with contrastive and
masked language objectives. MedCLIP [8] is used in
the medical field as an extension of CLIP with strong
retrieval and classification in multiple modalities, with
high computational expense. Together, these models
highlight the advantages and limitations of multimodal
Al in the medical field, particularly in terms of
generation, interpretability, and training efficiency.

2. These models currently maintain the best available
performance levels

The image report retrieval is one of the tasks, as clinical
images are compared with the most suitable textual
reports and vice versa. Zero-shot classification is
another key feature that enables the diagnosis of
disease types by using a few training samples with the

help of textual prompts. VLMs can also help in
localization activities using weakly labeled data to
identify areas of interest, such as tumors or lesions.
Finally, with the advantage of classification and
localization, these models automatically produce
natural language reports or summaries directly on
medical images, which help clinicians provide quick,
accurate, and readable records. While these models
highlight progress in Vision Language Learning for
medicine, they are most important when evaluated in
isolation, without direct comparison across cancer-
specific tasks. CLIP, though powerful in zero-shot
learning, struggles in clinical interpretability. BioViL
achieves strong alignment but remains restricted to
radiology. MedCLIP generalizes better across domains
but demands extensive medical pre-training, while
GLoRIA improves region-level grounding but is
computationally expensive. More recent multimodal
frameworks such as CHIEF (2024) extend beyond
radiology to pan-cancer detection, achieving ~0.94
AUC, but challenges in interpretability and validation
remain. As shown in Fig. 3 (a) and (b), the
advancement in detection capabilities and the shift of
classic single modality techniques to the modern
multimodal paradigms are illustrated.

E. Cancer detection with NLP and VLMs

Recent surveys provide methodical insights into
multimodal Al in oncology. Nakach et al. [30] reported
on deep learning fusion methods in breast cancer,
whereas Gao et al. [31] introduced an explainable
framework for fusion methods in predicting therapy
response. Patel et al. [33] have focused on cross-
attention transformers to detect anomalies in medical
imaging, but Waqas et al. [29] and Yang et al. [28] have
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placed emphasis on multimodal data integration in
oncology settings. These works taken together create
a solid base, yet they also show the necessity to make
comparative benchmarking of VLMs and LLMs across
the types of cancer, which inspires the current study.
Text-based NLP processing analyzes pathology
reports to detect tumor grades and extract biomarkers,
while the medical imaging CNN [12] identifies
suspicious regions  in mammograms  and
histopathology slides. To jointly analyze the clinical
narratives and imaging data, multimodal models
achieve stronger diagnostic performance. For instance,
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the mammograms paired with radiology reports then
improve breast cancer localization. The CT scans with
patient notes enable earlier lung cancer detection, and
colonoscopy or histology images with textual
annotations enhance colorectal and prostate cancer
classification. The pipelines, such as MedCLIP +
ClinicalNERT, have demonstrated superior sensitivity
and specificity in Table 1 compared to single-mode
baselines. Nevertheless, the challenges remain around
interpretability, dataset generalization, and real-world
clinical validation, which must be addressed before
widespread deployment.

Trends in Cancer Detection Technologies (2010-2025)

.
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Fig. 3. (a) Comparative AUC-ROC performance across different cancer detection methods (e.g., TF-IDF,
BioBERT, BioViL, CLIP). (b) Evolution of cancer detection technologies from traditional single-modality
methods to modern multimodal transformer-based systems (2010-2025).

lll. Methodology

In this section, the mathematical context of the
intended framework to identify cancer with the help of
LLMs and VLMs will be outlined. To formulate the
defined task, both wunimodal and multimodal
representations are presented, and the fusion strategy
defines the learning goals and assessment measures.

A. Problem definition

This study addresses two fundamental challenges in
cancer detection that directly affect clinical decision-
making design requirements. Formally, cancer
diagnosis is a multimodal classification problem, with
the medical images and clinical text being mapped to a
cancer class in Eq. (1) [21] [22].

f= (Ximg:tht) - Y (1)
Where X;,, an input is medical images (CT, MRI,
histopathology), X.,:; is clinical textual data (EHRs,

pathology/radiology reports), Y €{0, 1, ..., K is cancer
class label.

1. Text-only Cancer Detection

The electronic health records, pathology report, and
radiology outcomes are clinical descriptions that
provide fundamental diagnostic data. However, the
texts are typically ambiguous, inconsistent,

counterintuitive, and filled with unnecessary data. The
task is to categorize specific clinical notes as a cancer
diagnosis if they identify the specific cancer type,
including lung, breast, or colon. Radiology records that
contain a detected quantity or a hazy object are
typically a sign of lung cancer. The reports of
pathology, which state that the carcinoma is HER2
positive, are usually related to breast cancer, whereas
the discharge summaries referring to adenocarcinoma
of the colon point toward colorectal cancer [41]. We
formulate this as either a binary (cancer vs. non-
cancer) or a multi-class classification problem. The
model processes the input sequence of tokens T =
{t;,t;.ty}, the transformer encoder produces
contextual embeddings, as defined in Eq. (2) [1].

H = Transformer(T) € R™¢ 2)
Where H is the output matrix of the transformer, R is
set of real number, nand d are number of tokens in
input sequence and the embedding dimension, R™¢ is
a matrix with n rows and d columns. In order to get the
global text representation, the [CLS] token embeddings
are used to aggregates the clinical report in Eq. (3) [2]
[3].

hexe = H [cLS] 3)
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where h,,; is a text feature vector representation of the
whole clinical report, then embedding with H¢, s token
in the transformer model used whole sequence. It
applies a classification head with softmax to generate
class probabilities. This approach reduces variability in
interpretation and provides standardized outputs
across diverse clinical texts. The global embedding is
offered by a softmax layer through a classification head
that generates class probabilities, as defined in Eq. (4)

(2] [4].

radiology reports connected to the chest X-rays
increased the interpretability and consistency of lung
cancer screening. This task requires VLMs capable of
learning cross-modal relationships [22] and exploiting
complementary signals. This framework employs
contrastive loss to maximize alignment between
correctly paired image and text embedding while
penalizing mismatches. This ensures that, for example,
a lung CT scan is most similar to its associated
radiology note, improving diagnostic robustness. The

Table 1. Comparison of Foundational Vision Language Models and Recent Advances (2020—2024).

Model Modality Focus Key Application Reported Main Limitation
Performance
CLIP General images Zero-shot Strong in zero- Poor clinical interpretability;
+ text retrieval, prompt- shot (~80% not trained on medical data
based retrieval
classification accuracy on
generic tasks)
BioViL Radiology Report-image ~0.86 AUC Limited to radiology, lacks
images + reports  alignment, chest (radiology histopathology/generalization
X-ray retrieval retrieval tasks)
MedCLIP Medical images Image-text Competitive Requires large-scale medical
+ reports retrieval, few- retrieval, pre-training, limited
shot diagnosis stronger than explainability
CLIP in medicine
GLoRIA Entity—region Localizing Accurate Computationally intensive;

grounding clinical terms in grounding of small datasets
images pathology terms
CHIEF (2024) Multimodal Pan-cancer ~0.94 AUC Early-stage model; limited
(pathology + detection, across multiple clinical deployment and
clinical text + subtype cancer types interpretability
radiology) classification
P((Y|Xexr)) = Softmax(Wy. hyye + by) 4) image and text multimodal embeddings are aligned

Where h;,; is [CLS] token embedding from BioBERT/
ClinicaBERT, W, is the weight matrix of the
classification head, b, is a bias vector of the
classification head, and Y is a probability distribution
over cancer classes.

2. Multimodal Cancer Detection

Text alone captures semantic descriptions, but imaging
modalities such as histopathology slides, CT scans,
and radiographs provide spatial and morphological
details critical for cancer subtype [15] identification. The
important integration of both modalities is crucial for
ensuring decent diagnostic performance for various
medical tasks. In the case of early tumor detection
using lung CT scans with corresponding textual
descriptions, more accurate nodules can be identified.
The integration of breast cancer histopathology slides
and pathology notes enhances the evaluation of HER2
status, resulting in improved efficiency in subtype
classification. Similarly, during the workflow alignment,

with the help of the contrastive loss function defined in
Eq. (5) [19].

Himg = ViT(I) € R™4 (5)
Where H;,,is a matrix, where each row is the
embedding of one image patch, m and d number of
patches and embedding dimension, I is input medical
image, ViT (1) is breaks image into small patches and
encodes them. To establish effective alignment
between the embeddings of paired images and texts,
which use InfoNCE contrastive loss, is able to
maximize the similarity among correctly paired
embeddings and to minimize similarity between
unmatched pairs, which improves multimodal
discrimination ability. The image and text multimodal
embeddings are further optimized with contrastive loss
function defined in Eq. (6) [19] [40].

N (sim(zi,ti)/T)
Linfonce = = Xi=1108 s exp(sim(zz,tj)/T> (6)
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where z; and t; are image and text embeddings, sim(.)

is cosine similarity, and 7 is a temperature scaling
factor.

B. Datasets and Preprocessing

To build and validate both the unimodal (text-only,
image-only) and multimodal (image + text) models for
diagnostic purposes in cancer, we curated and pre-
processed data sets from many publicly available and
institutionally derived repositories. The datasets range
through structured clinical reports and raw medical
imaging to paired multimodal entries [18]. This section
describes their sources, the way they are structured,
and preprocessing procedures, as well as their
complications. The multiple multimodal cancer
detection benchmark datasets. In order to make it
reproducible, all preprocessing steps are fully
explained in Table 2, MIMIC-III/IV (EHR and Clinical
Notes) discharge summaries, pathology notes, and
radiology reports are available. Text data were pre-
processed by performing token normalization with
UMLS, negation identification with NegEXx, and section
division (e.g., introduction, finding, impression, history
of present iliness). TCGA (The Cancer Genome Atlas)
whole Slide Images (WSIs) were divided into
overlapping 256 - 256 patches (20 percent), and the
color variation was reduced by application of Macenko
stain normalization.

The class imbalance between the tumor subtypes was
addressed by patch-wise augmentation on the minority
class towards rotation, flipping operations, and
Gaussian noise addition. CAMELYON16/17 contains
metastasis WSIs of lymph nodes with slide-level and
region-level annotations. Severe class imbalance was
compensated with the Synthetic Minority Oversampling
Technique (SMOTE) at the patch level to overcome the
underrepresentation of cancer-positive samples.
MIMIC-CXR (Radiology Reports + Images) multimodal
with radiology reports alongside the associated chest
radiographs. All the images were resized to the same
dimension of 224 x 224, and metadata (such as patient
age, sex, and admission details) were also
standardized into the tabular form to enable
downstream modeling. In this case, histopathology
slides, we applied the Macenko normalization of the
stain to minimize the color variation across slides. This
transformation standardizes an intensity and contrast
in relation to images, ensuring consistent
representation during training, and is expressed in Eq.
(7) [20].

[norm = a. (I - .u)-z_l + ﬁ (7)
Where [ is the raw histopathology image, u, Z are the
mean and covariance of the stain vectors, and 8 control
contrast and intensity alignment.

1. Clinical text datasets

To obtain accurate multimodal cancer results, we
brought together a variety of both public and our private
image and text datasets. MIMIC-III [16] and MIMIC-IV
[17] were the main sources | used for finding clinical
texts that contained discharge summaries and notes
from radiology and pathology. They were also
supported by artificial reports and EHRs that included
only selected information, as well as EHRs from
hospitals approved by the IRB. The note listed parts of
the illness, including results from biopsy, CT, or MRI,
and current medical history. For cancer-related
interests, the experts selected the data using ICD-
9/ICD-10 codes and, where necessary, also checked
them by manually annotating the same information.
Cancer and non-cancer can be classified using
different schemas, as well as different types of cancer.
To verify and review all issues where texts are vague,
different terms are included, negative statements
appear, and timing references are included. To do this,
normalize UMLS, seek out negations with NegEXx, and
leverage the token rules from SciBERT and
ClinicalBERT for all medical-related information.

2. Image datasets

The Cancer Genome Atlas (TCGA) [24],
CAMELYON16/17, and data collected in clinical
studies were among the sources of imaging data. The
images included histopathology slides, CT tests, MRI
scans, and PET scans. Since whole slide images (WSI)
[13] are huge and reach gigapixel sizes, flow cytometry
involves preprocessing the images using Otsu
threshold, collecting patches that overlap to preserve
continuity in the image, and applying the Macenko or
Reinhard methods to lessen color differences. Often,
all annotations were at the level of a whole slide or just
a segmentation, apart from limited spatial labels.
Images from radiology were standardized and resized
to allow their use with ResNet and ViT models.

3. Multimodal datasets

MIMIC-CXR and TCGA, together with their clinical and
diagnostic details, were integrated to enable
multimodal learning. Again, the methods they used
were single tests that led to reports as well as whole
groups of reports from samples with similar patterns.
To the pipeline, all the recording pairs were organized
and tagged accurately, and any missing recordings
were eliminated. | tried different approaches to
decrease overfitting and boost the model’'s results
when presented with fresh data. | had to translate many
pieces into other languages and look for synonyms to
use throughout the writing, along with other changes.
The new features | integrated are options to resize,
control brightness, include artifacts like noise, and
apply different effects often found in standardized
histopathology, like scattering of normal tissue and
blurring. Ensuring the data was preprocessed and
augmented made it possible to create a multimodal
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Table 2. The Datasets and Preprocessing Pipelines for Cancer Detection

Dataset Modality Preprocessing Steps Access Link
MIMIC- Clinical text (EHRs, Token normalization (UMLS), negation https://physio
v discharge summaries, handling (NegEx), section splitting (Findings, net.org
pathology reports) Impressions, HPI)
TCGA Whole Slide Images WSiIs segmented into 256x256 patches with  https://portal.g
(WSls) 20% overlap; Macenko stain normalization;  dc.cancer.gov
augmentation for minority tumor classes
CAMELYO Histopathology WSiIs Slide- and region-level annotations; class https://camely
N16/17 (lymph node imbalance mitigated with SMOTE on17.grand-
metastasis) oversampling challenge.org
MIMIC- Radiographs + paired Radiographs resized to 224x224; structured  https://physio
CXR radiology reports metadata extraction (age, sex, admission net.org

details)

collection meeting all regulatory requirements and
supporting cancer diagnosis and classification.To
prepare the models, to arranged them into two groups
based on whether they handled text or text and images.

C. Model architecture

Two models were built for each data type: text-only and
multimodal (text + image).

1. LLM Architecture (Text-Only)

We trained BioBERT and ClinicalBERT which are
transformer-based models developed for use in
medicine, to recognize cancer simply by reading text.
They rely on many layers of transformer encoders,
along with self-attention and positional encoding, to
underline the connections between the various parts of
the text. The classification head combines all the parts
of the text based on the CLS embedding and then
sends them through a fully connected layer to
determine if cancer is present in the text. They can
perform well, as they are familiar with most biomedical
terms and can handle lengthy, disorganized patient
records, even when human involvement is not required.
Fig. 4 shows the comparative view of two model
structures of cancer detection. The left one is LLM
Architecture (Text Only), which accepts textual clinical
data, passes it through a classification head and CLS
embedding, and ultimately makes a prediction stating
'Cancer: No.' On the other hand, the VLM Architecture
(Text + Image) on the right hand side uses both the
visual data (e.g., chest X-rays) and textual data. It uses
patch embedding [19] and a transformer module to
make a better prediction, and the answer comes out as
Cancer: Yes. It explains the advantage of multimodal
learning to make the diagnosis more accurate. The
system integrates a text encoder (e.g., BioBERT or
ClinicalBERT) that processes clinical narratives such
as radiology or pathology reports, and an image
encoder (e.g., ResNet-50 or Vision Transformer) that

processes medical images [38], including CT scans or

histopathology slides. The resulting embeddings are
fused using either cross-attention or contrastive
learning mechanisms. The fused representation is
passed through a classification head using a sigmoid
or softmax layer to predict cancer presence and type.
This architecture enables joint reasoning over both
modalities, improving diagnostic accuracy in complex
clinical settings.

2. VLM Architecture (Text + Image)

Bringing images and text together in their system,
VLMs make it easier to correctly identify a disease [33].

Model Architecture

VLM Architecture
(Text + Omage)

LLM Architecture
(Text Only)

EE
=
(=l
Pratch
Embeddings Output Layer

Classification a Q
Cutpot Layer

Text Encoder

Fig. 4. MedFusionNet architecture for multi-
modal cancer detection.

Images from medicine are converted by ViT or ResNet-
50 into a set of patch embedding, including positional
information. The text encoder applies BERT or
ClinicalBERT to transform the words in clinical
narratives and radiology reports into a helpful format.
This method involves two techniques: (1) Contrastive
Learning aims to tie the information in images and text
by computing cosine and using InfoNCE, and (2)
Cross-Attention makes use of transformer features to
combine different modalities in detail. Within the output
layer, neural network classifiers utilize linear functions
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and sigmoid or softmax functions to predict the
likelihood of cancer or any of its subtypes using the
output data. Concept Island has used CLIP, BioVilL,
and MedCLIP as main models. To compile data from
individual patches of images into a single global
representation, apply according to the formulation in
Eqg. (8) [19] [22] and positional encoding maintains the
integrity of spatial information necessary in later tasks.

himg = POOl(Himg) (8)
Where h;,4is a global image representation, H;p, is
the input medical image, Pool(H;n,)is aggregates
patch embeddings into a single global image. The
reshaping flattens the image into non-overlapping
patches. Upon the combination of the text and visual

attributes, the ultimate calculation of the presence or
type of cancer is

P

(a) Benign dermoscopic skin lesion image
samples

L 4 (T

nant dermoscopic skin lesion image
samples

-

%3

(b) M;Iig

! E = w E‘ b

> - 2% 3 5 HLANT
(c) Intermediate dermoscopic skin lesion
image samples

Fig. 5. (a) (b) and (c) Visual-Textual attention
Overlay based Multimodal Skin Lesion

made via the use of incorporating a sigmoid (or
softmax) layer in case of binary or multiclass cancer
classification. The text and image features combined
form a fusion function that enables joint operation
across modalities, as described in Eq. (9) [22] [33].

hfused = ¢(htxt' himg) 9
Where ¢ is a fusion function (e.g., concatenation,
attention-based fusion), hy,.q is combined text-image
representation. This layer performs joint reasoning
over both modalities. Finally, a fusion function is used
to combine text and image embeddings. This operation
involves modal multimodal reasoning and maps the
assembled representation into a single feature space

for subsequent cancer classification. The fusion
function is defined in Eq. (10) [21].

Where h.,: and h;n,, are text and image embeddings,
@ is denotes fusion, e.g., concatenation, W and b are
the classification weights and bias, ¢ (.) is the activation
function, and F is the final function.

D. Training process

The design of the process ensured that the training was
powerful, flexible, and capable of incorporating new
skills over time [27].

1. Text-Only Models (LLMs)

To improve them, | utilized labeled data and employed
the cross-entropy loss function. Based on the length of
the input and the GPU’s memory size, we maintained
a batch size of between 16 and 32 vectors.

Algorithm. 1. Multimodal Feature Encoding

Input: Medical image /, Clinical text T
Output: Visual region embedding R,
Text embedding Tembed

Divide / into patches P = {p1 ... pn}

2! ForeachpieP
2.1: Compute patch embedding
vi— ViT (pi)
2.2: Apply GAT on patch embedding
R« GAT (v1 ... vn)

3. Tokenize T into sentences S = {s1 ... Sm}

4. Foreachs €S
4.1 Encode tokens
h_token < ClinicalBERT(si)

3! Encode full document:
h_doc < Long former (T)

6:  Construct multi-granular text embeddings:
Tembea < {h_token, h_sentence, h_doc} = 0

The training process used up to 5 epochs, but it was
interrupted early once the validation loss started to
increase. To classify skin lesions, Fig. 5 illustrates how
the overlays of attention facilitate correlations between
text and visual areas, which enable interpretations of
textual keywords. In practice, training required
substantial computing. The multimodal VLMs are
trained on NVIDIA A100 GPUs in a distributed
configuration. It requires ~48 hours to converge on both
TCGA and MIMIC datasets. The text-only variant of
LLMs trained with a single A100 GPU in ~12 hours. We
restricted the batch size to 16-32 because the GPU
memory is not large enough, and the loss function
stopped early to avoid overtraining. This limitation
highlights the computational expense associated with
using multimodal models in hospital environments. Fig.
6 shows a system that simulates a multimodal cancer
diagnosis pipeline that combines dermoscopic image
features and text clinical embedding. By fusing
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similarities based on attention and reasoning, it
produces explanations for skin lesion images [15],
which helps in classifying benign, malignant, and
intermediate conditions with high-resolution overlays
and explainability.

2. Multimodal Models (VLMs)

The developers went through two steps in training the
VLM. Previously, big batches of data were taught by
using contrastive loss (InfoNCE) to match images and
text, either real or artificial. Moreover, MLM and ITM
tasks also helped me gain skills in how to represent
information. During this stage, the models became
more accurate by using categorized images that
represented cancer. To solve the two objective
optimization, used cross-entropy loss as well as
contrastive loss. To better support general learning, the
team wused random cropping, adjusted image
Algorithm. 2. Cross-Modality Alignment and Fusion
Input: Visual regions R, Patch embedding v;,
Text embedding Tembed

Output: Fused multimodal representation F

10 Align tokens to patches:

A1« CrossAttention(h_token, vi)

sentences to regions:
A2 «— CrossAttention(h_sentence, R)

2. Align

3: Align document to global visual summary:
A3 < CrossAttention(h_doc, Avg(R))

4. Concatenate all aligned features:
Z— [A1; Az Ag]

3. Apply transformation:
F<«— ReLUW -Z+b) =0

histograms, jittered stained regions in the images, and

changed either the order or the language in the text.
This contrastive objective follows the InfoNCE
formulation introduced in contrastive predictive coding.
To ensure stable convergence, a cosine decay learning
rate scheduler is used in the training process because
the learning rate is slowly tapered off throughout the
training steps as indicated. The final multimodal
probability distribution of cancer classes, as defined in
Eq. (11) [22] [33] [40].

Y = Softmax(Wrhsyseq + by) (11)

where U predicted probability distribution is over
cancer classes, W and bf are the weights and bias of
the fusion classification layer, and the function used for
binary classification (or softmax for multiclass). Fig. 6
shows a three-stage multimodal deep learning [12]
pipeline that was drawn to be applied to medical
images and clinical text analysis.

Algorithm 1. (Multimodal Feature Encoding) partitioned
the medical image into patches and tokenized the
clinical text, giving aligned visual and textual
embedding. It is crucial to multimodal feature encoding,
where both image patches and clinical text tokens are
encoded at a variety of scales (token, sentence,
document).

Algorithm 2. (Cross-Modality Alignment and Fusion)

MG-CMR Net
Clinical Text

? ; V
= Cross-Modality Alignment

Hierarchial Text l
Encoding ¢ y ;
Cross-Attention

1 !

Longformer
Cross-Attention

Token «—» Patch l
Sentence ¢« Region

Fusion and Joint Reasoning

Casual Resoning
Document<«—> Slide Head

}

Medical Image Sollency __[ cigggifcation
Explanations

Fig. 6. MG-CMRNet Architecture for Multimodal
cancer Diagnosis.

takes a sum of these embeddings, tests the
enablement of causal analysis, and, in case it is
enabled, constructs a graph of causes and creates
relationships based on it. Otherwise, it makes a direct
prediction. It then performs cross-modality alignment,
i.e., essential to merge visual and textual signals
beyond simple concatenation, and makes the model
more efficient with missing or noisy data.

Algorithm 3. (Causal Reasoning, Classification and
Explanation) completes the prediction routine, giving a
target class label and human compassionate
explanations. It adds to existing classes the view of
casual reasoning and interpretability. This component
is original in relation to previous VLM studies, as it
generates explicit Grad-CAM overlays and text
keywords of attention to support the diagnosis clearly.
The proposed framework extends one step further than

previous VLMs like CLIP and BioViL with a new
approach to fusion that combines cross-modality
alignment (algorithm 2) with a causal reasoning head
(algorithm 3). The design allows end-to-end frame
explanations using Grad-CAM and attention-based text
keywords, making the framework an application-ready
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medical diagnosis tool, rather than a metric-oriented
benchmarking experiment. The flow is made clear with
standard flowchart symbols of processes represented
by rectangles and decision points represented by
diamonds. Fig. 7 illustrates how the information flows
as itis processed through feature encoding, fusion, and
causal thinking to return information in human-
understandable formats. This architecture makes sure
that the model learns complicated relationships across

CIinica' Tex‘ T
/ Algorithm 1: Multimodal Feature Encoding \

Medical image / Tokenize text T
Align sentences &
patches docuement to regions
Align Sentences Concatenate
\ & document features /

Algorithm 2: Cross-Modality Alignment and Explanation

Divide / into

Build Causal graph Predict Class

& Infer relationships

-~ No A

/ Algorithm 3: Causal Reasoning, Classification, \
and Explanation

Predict Class

Fig. 7. A three stage multimodal deep learning
architecture which can process both a medical
image and clinical written material,. The pipeline is
composed by (1) Multimodal Feature Encoding an
embedding extraction and alignment network of
patches and texts, (2) Cross-Modality Alignment
and Fusion an optional step of causal reasoning,
and (3) Causal Reasoning, Classification and
Explanation to make predictions and interpretable
textual and visual interpretations.

modalities, gaining accuracy and evidence readability
in medical Al operations.

3. Training Environment

Training was done with NVIDIA A100 GPUs, but VLM
required up to 8 GPUs in a fully distributed
configuration. They depended on PyTorch, Hugging
Face Transformers, and MONAI for working on medical
data from a distance. To install the AdamW optimizer
and apply learning rate warm-up as well as cosine
decay. For the LLMs, module was tuned to 2e-5
meanwhile, the rates were set to 5e-5 and 1e-4,
depending on the required settings for the other
models. The loss function that determines the

optimization of the model is the classification loss
defined by the cross-entropy between the predicted
probabilities and the correct labels. The baseline (TF-
IDF + Logistic) regression approach using the standard
cross-entropy loss, as defined in Eq. (12) [40].

Leg = _Zlf:1 Y, log('gi) (12)

Algorithm. 3. Causal Reasoning, Classification,
and Explanation

Input: Fused features F, Target class y
Output: Prediction y, Explanations:
(Text_Keywords, Image_Regions)
1 If causal head is enabled:
1.1: Build causal graph G_causal from F

1.2: Infer relationships via differentiable graph
inference

1.3: Extract top influential regions & terms
2. Predict class: § < Softmax(F)

3: Compute total loss:

L total — L_CE + A1L_contrastive + Az
L causal

4: Optimize with AdamW

3. Visual explanation:
5.1: Apply Grad-CAM to
I - Image_Regions
5.2: Extract terms from attention
weights = Text_Keywords
6: Return (9, Text_Keywords, Image Regions) =0

where L., is cross entropy loss, k is the number of
classes, Y, is the true label (one hot encoded), and U,
is the predicted probability for class <. This is a
standard loss function used in classification tasks to
penalize incorrect predictions. This scheduler gradually
decays the learning rate in a cosine manner to improve
convergence.

E. Evaluation metrics

The evaluations included the use of a broad system to
compare different cancer detection situations.

1. Standard Classification Metrics

To measure the accuracy of the outcomes using
accuracy, precision, recall, and F1-score. The
accuracy of the model for predicting cancer and
detecting cancer

was evaluated using precision and recall
measurements. It makes sense to apply the F1-score,
as it combines recall and accuracy well for cases where
the data is not equally represented. Fig. 8 shows a
comparative framework of baseline models and a multi-
granular textual description generation pipeline of
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cancer detection. On the left, baseline models perform
ROI (Region of Interest) localization, metadata fusion,
coarse captioning, and medical knowledge retrieval in
classification, QA reporting, or mask/bounding-box
creation. A Multimodal Large Language Model (MLLM)
is prompted on the right to generate multi-granular
textual descriptions of the ROl and image data.
Performance-based metrics (AUC-ROC and Precision)
are applied to the generated descriptions of such
models as BioBERT, BioViL, and CLIP variants, which

in order to quantify model interpretability. In the binary
classification tasks, the output is mapped to probability
space using the sigmoid function in Eq. (13) [40].

sim(hyqih
xp( (hmgi txt)/T)
; @)
h il
W T

Where sim(Rpg;, hexe )the cosine similarity between a
pair of positive image texts pair, N is the number of text
samples, T is a temperature controlling parameter,

(13)

Leontrast = —log

support  explainability and fine-grained clinical : : : -
eprF;nationsp y 9 Leontrast 1S the contrastive loss (infoNCE). The paired
5 E\UC ROC‘ image and text embeddings are optimized using the
Baseline Models Mulitgranular Textual Image
) 1 Description Generation
. .
 SEEEE— -
:> ', L Rc:.' C> @ Give me detailed description
ocadng ROI of the image. Based on coarse
Caption. lesion n/yion ..
[ Classification fO — Data‘ IB @ L Multigranular
CD l:> =|integration| coarce - —> i) Textual Description
&() Caption A Chest X-ray
i showing lungs
R QA Multigranular centrally locat-
eport or Textual Description o within the
‘ @) Know.ledge Medical Model AUC-ROC |Precision thoractic cavity
(O Retrieval Rl ROl is position
.ﬂ 9¢) BioBERT 087 0.92 horizontaly at
mwm— pr— pom— the left-center
loVi - - and irregular
Mask or B-box ; Z
Prferfiment Comparison . texture... scion
- Transformer Based CLIEFitietuned] 9.5 020 in cancer disease
% | 4 Models for CLIP Fine- :
/ Cancer Detection tuned Al 089 087 Data Triplet

Fig. 8. Transformer based multi-granular interpretability for a Chest cancer histopathology slide.

It was used to figure out how efficiently the model
divided students into different groups. A comparison
between the true positive rate and the false positive
rate was created, which helps distant learning in cancer
cases where cancer is not commonly found. Left:
Original image. Center: Attention weights from the ViT
encoder. Right: Grad-CAM overlay highlighting regions
strongly influencing malignancy prediction. Red
indicates high contribution.

3. Mechanisms for Explaining a Set of Models

To ensure trust and openness at the hospital, ways to
make reads simpler for nurses were included. Using
Grad-CAM, we identified areas in images that impacted
the final outcome given by the network. LLMs used self-
attention weights to identify which keywords from the
case were most significant (those were “atypical lesion”
and “malignant mass”). Furthermore, analysis of these
maps revealed that both visual and textual embedding
roughly agree in their latent space [20]. To measure the
influence of each area of an image over the final
prediction, the Grad-CAM method is used to describe

infoNCE contrastive loss, as formulated in Eq. (14) [22]
[40].

Leotar = @Lcg + BLcon (14)
Where L;y:q; is a total loss, a and f are weight to
balance classification and contrastive loss. To measure
the effectiveness of each modality or an encoder, the
difference in AUC is calculated with a formula in Eq.
(15) [25] which illuminates the contribution level of
every component to a model’s performance.

Lc = ReLU(Zy ai A + X, Biwy) (15)
Where L_is a multimodal class discriminate for class c,
AK is the activation map from the k" feature channel, gf
is importance weight of term ¢ for class c. Here aj, is
the importance weight computed via backpropagation.
The resulting map W, helps visualize which parts of the
image most influenced the model’s prediction. The full
and reduced models compare the effect of the ablation
of the modality as a metric of that effect, as defined in
Eq. (16) [24] [25].

AMetrc = Metrice, — Metricapatea (16)
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Where AMetrc performance difference when compare
the full multimodal model to an ablated version,
Metrics,, is the performance (e.g., AUC) with all
modalities, and Metric,p0:0q IS the performance after
removing one (e.g., image or text). This indicates how
much each input source contributes to model accuracy.

4. Cross-Validation

5-fold cross-validation was used to avoid problems with
performance due to various splits of the data. As a
consequence, our findings strengthened and could be
used for others.

IV. Results

In this section, we discuss in detail the proposed
framework. We also compare with the existing
unimodal and SOTA models and obtain results in terms
of diagnosis accuracy and interpretability.

A. Baseline models

In addition to TF-IDF combined with logistic regression
and a shallow CNN [12], we performed a stronger
baseline to ensure fairness. These include (i) a pre-
trained ImageNet-50 image-only classification, and (ii)
a non-adopted BioBERT on text-only classification.
The models offer more competitive unimodal reference
points, closing this gap with the traditional approaches
and more modern multimodal transformers. The
baseline model of logistic regression performs cancer
probability prediction by applies the weight learned
(together with the input vectors) and subsequent
application of a sigmoid function.

B. Quantitative results

We evaluated both LLM-based and VLM-based models
used for cancer classification problems. The datasets
include clinical text (MIMIC), histopathology images
(TCGA), and matched datasets [14]. All reported
figures are obtained by averaging results over 5-fold
cross-validation with 80/10/10 train/validation/test
proportions. Learning rates converged to 2e-5 on text-

only models and 5e-5 on multimodal, and in both cases
stopping was used with a threshold of 5 epochs to
avoid overfitting. AdamW was applied throughout
experiments critically, the AUC values are reported and
reproduced in experimental conditions and not hand-
picked out of the prior literature. Table 3 reports mean
t standard deviation to confirm no unstable results.
Overall, for cancers, the multimodal models based on
transformers outperformed unimodal methods. BioViL
performed the best in lung [37] cancer classification
(AUC = 0.92 = 0.01), verifying such prior claims in the
pipeline. To evaluate diagnostic quality, it was
computed with classification measurements like
accuracy, precision, recall, F1-score, and AUC, using
the following equations: Eq. (17) — (20) [20] [37].

TP+TN

Accuracy = ————— (17)
TP+FP+TN+FN
Precision = —~—, Recall = —~ (18)
TP+FP TP+FN
Precision*Recall
Fl - (Precision+Recall) (19)
AUC = [} TPR(FPR)d(FPR) (20)

Eq. (17), (18), (19), respectively [37] and (20) [20] [37]
are essential for evaluating model performance,
particularly when dealing with imbalanced datasets in
medical diagnostics.Here, TP,FP,TN,and FN
represent true positives, false positives, true negatives,
and false negatives respectively, TPR and FPR are
fraction of predicted positive and negative cancer
cases, Precision fraction of predicted positive cancer
cases, Recall fraction of actual positive cancer cases,
F; is harmonic mean of precision and recall, and AUC
is area under the ROC. These metrics are crucial for
evaluating diagnostic accuracy and robustness,
especially in class-imbalanced settings typical of
medical data. Table 3 summarizes in detail the overall
performance of various unimodal and multimodal
models on cancer types and the gains achieved by the
able combination of visual and textual modalities.

C. Reproducibility Statement

Table 3. Comparative Performance Summary of Unimodal and Multimodal Models.

Model Input Type Cancer AUC- Precision Recall F1-Score p-value (vs.

Type ROC TF-IDF+LR)
TF-IDF + LR Text-only Lung 0.76 0.73 0.70 0.71 10.02
BioBERT Text-only Breast 0.87 0.85 0.83 0.84 10.01
ClinicalBERT Text-only Colon 0.85 0.82 0.81 0.81 10.01
BioViL Text+lmage Lung 0.92 0.90 0.88 0.89 +0.01
CLIP (Tuned) Texttlmage  Colon 0.91 0.88 0.87 0.87 +0.01
MedCLIP + BERT TexttlImage  Breast 0.90 0.87 0.85 0.86 +0.01
ViT + ClinicalBERT Text+tlmage  Breast 0.90 0.88 0.86 0.87 10.01
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The proposed ViT + ClinicalBERT model and TF-IDF +
Logistic Regression model are benchmarked, then
compared to BioBERT, ClinicalBERT, and the review
in a 5-fold cross-validation, with the implementation
details discussed in the literature. Results on larger-
scale pre-trained models like BioViL, CLIP, and
MedCLIP are cited in the publications (2022, 2023)
originally due to required computation resources
outside the organization. To be equitable, the dataset
selection and metrics used to report should match
those published by the same in the literature.

D. Qualitative results

This way, the expert could check the expert’s approach
to the model. When looking at pathology reports with
LLMs, they identified a mass or abnormal cell type as
a significant area in most cases. They accomplished
this by using marks on the pictures to guide and
connect them back to words from the reports such as
mentions of “speculated lesion” and “hazy opacity”. The
following diagram illustrates the accuracy of doctors in
identifying three benign and three malignant nodules.
For all the cases, we pro- vide the outcomes that were
produced by Sybil, Deep Lung (DeeplPN) and the
approach we developed. As we have seen, the results
suggest that the model is more certain about cancer
and does not label benign nodules as cancer. The
complete and reduced models are experimented with
to determine the effect of excluding one modality, such
as an image or text, on overall performance. The AUC
difference is as a result of the contribution of each
modality towards the diagnostic accuracy.

E. Statistical Analysis

To evaluate the strength of results, we calculated 95%
confidence intervals (Cis) of all AUC-ROC values using
bootstrap (1000 samples). For instance, BioViL scored

versus 0.85 (95% CI: 0.84 0.86) of ClinicalBERT. The
pairwise ROC analyses using the DelLong test showed
that the improvement in the models of GP over the
unimodal models was significant at p<0.01. Similarly,
error distribution between models was not due to
chance because McNemar for classification outcomes
showed significance (p<0.05). These results support
the fact that the improvements are realized both
consistently and reliably.

F. Ablation study

The impact of every component and modality was
tested by using ablation experiments [25]. If images
were no longer provided to VLMs for cancer detection,
accuracy scores decreased by 7% to 10%. Removing
BioBERT/ClinicalBERT and using only BERT resulted
in a 5% decrease in overall performance. It illustrates
that using medical data helps the model connect terms
and expressions used in medicine. The Grad-CAM
weights of importance are computed to interpret the
predictions of the model and show which visual areas
have contributed the most. The efficiency of each
modality is quantified by the amount of contribution of
each part to model performance with Grad-CAM-based
feature importance and attention maps.

V. Discuss

Multimodal models performed better than unimodal
models, but challenges remain. Rare cancers (e.g.,
ovarian, pancreatic) had reduced AUCs due to limited
sample sizes. In which case, few-shot, transfer
learning, or synthetic augmentation is applied. Modality
dropout or simulated label noise robustness checks
revealed that cross-modality alignment mitigates
performance loss. Interpretability was clear. Grad-CAM
heat maps and attention fell at lesions labelled by

0.92 (95% Ci: 0.91 0.93) in detecting lung cancer radiologists, ~qualitatively  indicating support  of
: (2) Comparison with Clinical Implications
(1) Interpretation of Results Existing Approaches
" Vision-language
»| Combining text and —> Al improves
images early
The combination of visual and improved diagnostic | Emrsn AR
textual information in multi-medal accuracy :
models allowed them to achieve strong
performance
(3) Clinical Implications
Alignipg.visual and written - « Data recoaeneum limitiatons
descriptions of lung cancer > « Resource limits can affect use 0
led to more « Computationatal Resources
accurate predictions « Resource limits can affect VLMs

Fig. 9. Vision language alignment in multimodal cancer diagnosis.
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accountability and explainability. In terms of
deployment, the model takes 8 A100 GPUs (~48 h) to
train and ~0.2 s (LLM) and diagnostic accuracy of
various types of cancer. These numerical results
support the claim that joint reasoning in both the text
and image modalities produces statistically significant
improvements in diagnostic accuracy, precision, and
recall.

A. Interpretation of results

The combination of visual and textual information in
multimodal models allowed them to achieve strong
performance [26]. Using VLMs, both visual and written
descriptions of lung cancer could be aligned, leading to
more accurate predictions. Because the model
combines text and images, it can notice hidden details
that could be overlooked when only using one medium.
The proposed multimodal framework has significantly
better performance compared to unimodal baselines
Table 3. In particular, BioViL achieved an AUC-ROC
value of 0.92 £ 0.01 in lung cancer, which exceeds the
text-only BioBERT (AUC = 0.87) and ClinicalBERT
(AUC = 0.85). Similarly, the CLIP-based multimodal
fusion of colon cancer achieved 0.91 AUC with a p-
value of less than 0.01 as compared to the baseline TF-
IDF + LR (0.76 AUC). Further, the MedCLIP + BERT
setup achieved an AUC-ROC of 0.90 in detecting
breast cancer, which means the combined
representation of radiology images and clinical text can
additionally contribute to increased ~1.2 s (VLM) per
case to suggest feasibility for large hospitals, or it
requires distillation and edge optimization to run in
smaller clinics.

B. Comparison with existing approaches

Originally, text or image-based systems failed to deliver
accuracy in several major aspects. With the help of
multimodal transformers and combining them with both
modalities, physicians could diagnose patients more
accurately [24]. The left chest radiograph with Grad-
CAM overlay. Right Text snippet with model-
highlighted keywords (“hazy opacity,” “speculated
mass”). Arrows represent inferred alignment between
visual features and textual cues. In order to know what

each modality and individual domain-specific encoder
contributes, in the Table 4, an ablation study shows the
change in AUC-ROC when a particular component is
removed, or replaced by a randomly initialized one.
Fig. 9 illustrates the evaluation of VLMs for cancer
detection and their clinical relevance. It highlights that
combining visual and textual information leads to
significantly better performance, particularly by aligning
image features with written descriptions, which
improves prediction accuracy. Compared to traditional
approaches, integrating text and image modalities
enhances diagnostic precision. However, challenges
such as data quality limitations, computational
demands, and resource constraints can impact the
practical use of VLMs. Despite these challenges, the
models demonstrate strong potential for enhancing
early cancer detection in clinical settings. Although it
has high accuracy, there are limitations. First,
multimodal transformers require high computational
resources (~48 hours on 8xA100 GPUs). Second, the
utilization of only Western-centric repositories (TCGA,
MIMIC) limits the generalizability. Third, despite the
enhanced usage of Grad-CAM, interpretability remains
opaque for clinical applications. Finally, model fairness
and hospital adaptation are also confirmed to prevent
demographic or modality bias.

C. Clinical implications

With the vision language Al, doctors could identify
cancer in its early stages more successfully and with
less pain for patients [33]. Before using new findings in
healthcare, they must be carefully investigated and
regulated, and healthcare professionals should be
certain about how the models function. This helps to
support radiologists and pathologists as it relates
image characteristics with clinical sections, and it
remains capable of providing interpretable and
evidence-based diagnoses. It facilitates the detection
of cancers earlier and less invasively, which helps in
screening activities within less-resourced settings.
However, its use in healthcare must be clinically
validated, ethically controlled, and monitored to avoid
misuse or diagnostic bias. The multimodal Al could

Table 4. Impact of Modality and Encoders on Breast Cancer Detection.

Configuration Cancer Type AUC-ROC AAUC vs. Full Model p-value (vs. Full Model)
ViT + ClinicalBERT Breast 0.92 0.00 -
(Full Multimodal)
VLM only (no text Breast 0.84 -0.08 +0.01
encoder)
LLM only (no image Breast 0.86 -0.06 £ 0.01
encoder)
General BERT Breast 0.87 -0.05 1+ 0.01

instead of BioBERT

Manuscript received July 8, 2025; Revised October 20, 2025; Accepted October 25, 2025; date of publication October 30, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i2.652

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1335


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i2.652
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1320-1339

e-ISSN: 2656-8632

serve as an assistant triage and reporting system used
by physicians in future hospital operations.

VI. Challenges and Future Work

The proposed framework shows limitations. The
variation of data across institutions and modalities
limited generalization. The interpretability remains
limited, as black-box predictions are not often suitable
for clinical adoption. The computation cost acts as a
barrier to the application of this method in resource-
limited hospitals, and a performance deficit compared
to state-of-the-art (SOTA) models is evident in Table 5.
The solutions to major challenges in multimodal cancer
analysis include the issue of data heterogeneity,
interpretability, = computational cost, and the
performance gap of SOTA models. Federated learning
models allow learning to take place across multiple
institutions without violating privacy or compromising
security as opposed to centralizing sensitive

information. Multimodal Grad-CAM, a form of
explainability, can be used to produce attention heat
maps that assist with auditing the model and improve
clinical trust. Regarding the cost of our computation, it
is possible to have lightweight VLMs with efficient
parameter fine-tuning, pruning, and knowledge
extraction to lower the computational cost without
compromising accuracy. In rare cancer cases,
involvement such as synthetic data augmentation with
GANs or distribution models in combination with
domain adaptation can be used to stabilize the
distributions of the tumor type and enhance the
classification of infrequent cancer variants. Although
these achieved the SOTA gap relative to high-
performance models such as CHIEF (2024, AUG 0.94),
this means that more effective fusion strategies need
to be designed specifically to be used in cancer
situations.

Table 5. Comparison of Multimodal Cancer Classification Models with Recent SOTA approaches.

Model Modality Dataset Reported AUC Year Summary
CHIEF [24] Histopath + Text TCGA 0.94 2024 Transfomer-Based fusion,
Large-Scale training
Med-ViL [11]  Radiology + Text MIMIC CXR 0.91 2024  Vision-Language Pre-training
BioViL [8] Radiology + Text MIMIC-CXR 0.92 2023 contrastive + masked LM
Objectives
ViT + Histopath + Text TCGA 0.90 2025 Fusion of ViT + ClinicalBERT +
ClinicalBERT (Public) Multimodal Grad-CAM

VIl. Conclusion

This proposal aimed to develop and evaluate a VLM
transformer-based framework of multimodal cancer
diagnosis by integrating clinical text and medical
images using transformer-based encoders and fusion
approaches. The experimental analysis of TCGA,
MIMIC-III/IV, and CAMELYON datasets validated that
the proposed models have significantly higher
performance in comparison to unimodal baselines by
achieving an AUC-ROC value of 0.92 with p < 0.01 and
minimizing diagnostic error by 10-15%, which
validates the advantages of multimodal integration in
strong and clinically relevant cancer prediction.
Although the models are mainly based on publicly
available, Western-centric datasets, this can limit their
generalizability to various populations. The results
demonstrate that vision language Al can enhance
diagnostic accuracy, interpretability, and workflow
efficiency in oncology. Future work will focus on
increasing the diversity of datasets, domain adaptation
to rare cancers, and creating lightweight, privacy-
preserving, and federated multimodal learning systems
that are deployed in clinical practice ethically and
transparently, and on deployments in real-world
practice.
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