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ABSTRACT Accurate segmentation of acute intracranial haemorrhage (ICH) in brain computed tomography
(CT) scans is crucial for timely diagnosis and effective treatment planning. While the RSNA Intracranial
Hemorrhage Detection dataset provides a substantial amount of labeled CT data, most prior research has
focused on slice-level classification rather than precise pixel-level segmentation. To address this limitation,
a novel segmentation pipeline is proposed that combines a 2.5D U-Net architecture with a dynamic adaptive
thresholding technique for enhanced delineation of hemorrhagic lesions and their subtypes. The 2.5D U-Net
model leverages spatial continuity across adjacent slices to generate initial lesion probability maps, which
are subsequently refined using an adaptive thresholding method that adjusts based on local pixel intensity
histograms and edge gradients. Unlike fixed global thresholding approaches such as Otsu’s method, the
proposed technique dynamically varies thresholds, enabling more accurate differentiation between
hemorrhagic tissue and surrounding brain structures, especially in challenging cases with diffuse or
overlapping boundaries. The model was evaluated on carefully selected subsets of the RSNA dataset,
achieving a mean Dice similarity coefficient of 0.82 across all ICH subtypes. Compared to standard U-Net and
DeepLabV3+ architectures, the hybrid approach demonstrated superior accuracy, boundary precision, and
fewer false positives. Visual analysis confirmed more precise lesion delineation and better correspondence
with manual annotations, particularly in low-contrast or complex anatomical regions. This integrated
approach proves effective for robust segmentation in clinical environments. It holds promise for deployment
in computer-aided diagnosis systems, providing radiologists and neurosurgeons with a reliable tool for
comprehensive ICH assessment and enhanced decision-making during emergency care.

Keywords Intracranial Hemorrhage; Brain Segmentation; RSNA Dataset; Adaptive Thresholding; Deep
Learning; U-Net; Hemorrhage Subtypes.

I. Introduction illness [1]. It is a neurological emergency with serious
Intracranial hemorrhage (ICH) is bleeding within the and immediate implications that necessitate prompt
cranial vault, which may be secondary to trauma, diagnosis and treatment. Non-contrast computed

hypertension, aneurysm rupture, or any other underlying tomography (CT) scans are the imaging technique most
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frequently employed for ICH detection because of their
quick scan time and acute blood sensitivity [2]. Though
precise interpretation of CT scans requires significant
clinical skill and can be hindered by inter-observer
variation, notably in emergency or high-volume clinics.
As the global incidence of stroke and neurotrauma
continues to increase, there is an urgent need for the
development of computer-aided diagnostic systems to
support clinical practice and improve patient outcomes
[3].

Although CT scans provide essential information for
diagnosing intracranial hemorrhages (ICH), manually
processing large imaging datasets remains inefficient,
especially in urgent clinical settings where time is critical
[4]. Automated and accurate segmentation of ICH is
therefore vital to assist clinicians in precisely localizing
hemorrhages, measuring their volume, and identifying
their subtype distribution, which directly influences

treatment decisions and outcomes [5]. Differentiating
between hemorrhage subtypes, such as subdural,
epidural, intraparenchymal,  subarachnoid, and
intraventricular, is particularly important because each
subtype requires distinct management strategies.
Despite progress in image classification using deep
learning, there are relatively few models capable of
delivering high-resolution, subtype-specific
segmentation that accurately delineates hemorrhage
boundaries at the pixel level [6]. This research aims to
bridge this gap by introducing a novel technique that
achieves precise demarcation of ICH regions and
subtype classification on a pixel-wise basis, thereby
enhancing the reliability and speed of diagnosis and
supporting optimal treatment planning [7]. Deep learning
models, especially convolutional neural networks
(CNNs) such as U-Net and DeepLabV3+, have been
extensively used in medical image segmentation
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Table 1. Contribution Highlights

Contribution Existing Gap Proposed Solution Expected Benefit
Adaptive Fixed Otsu fails in low Local histogram + edge Sharper boundaries
Thresholding contrast gradient thresholding
2.5D U-Net 2D ignores context, 3D Hybrid slice context across Balance of efficiency
Architecture too expensive 3 planes and accuracy

Anatomical Priors Subtype confusion

Atlas-informed priors
integrated with U-Net

More accurate subtype
classification

applications [8]. Specific works have addressed
hemorrhage classification on the RSNA Intracranial
Hemorrhage Detection dataset, enabling accurate slice-
level predictions [9]. Fewer methods, however, have
applied these models at the pixel-level segmentation
level due to the lack of detailed ground truth masks and
difficulties in annotating the data [10]. Conventional
approaches, such as global thresholding, region-
growing, and intensity-based clustering, have also been
pursued but tend to overlook intricate variations in actual
hemorrhage appearances [11].

One of the main limitations in the segmentation of
intracranial hemorrhage is the inability to catch the very
faint contrast between the hemorrhage and normal brain
tissue. CT scans are also noisy and riddled with artifacts,

account for variability in pixel intensity between patients
or slices, resulting in poor segmentation [13]. Current
deep learning architectures tend to overfit major classes
and fail to generalize across smaller or overlapping
subtypes of hemorrhage [14]. Such issues necessitate
more innovative and more adaptive methods for
extracting boundaries and localizing subtypes [15].

To enhance segmentation accuracy, a two-stage
strategy merging deep learning with sophisticated image
processing is suggested [16]. Adaptive thresholding
methods that take local intensity changes and edge
features into account can more effectively separate
hemorrhagic tissue from adjacent structures [17].
Furthermore, incorporating anatomical priors and
attention modules within the segmentation network can

which further complicate lesion boundaries [12]. enhance attention on areas of interest. Skull stripping
Additionally, fixed thresholding techniques are unable to pre-processing and boundary refinement post-
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Fig. 2. Proposed architecture
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Table 2. Methodology Parameters

Step Technique

Parameters

Notes

Skull
norm.

Preprocessing stripping,

[0-1] intensity scaling

Removes bias from brightness
levels

Augmentation Rotation, flip, elastic

+20°, flips, a=1.0, 0=0.1

Prevents overfitting

Training Optimizer = AdamW  Ir=1e-4, batch=8, Early stopping after 20 epochs
epochs=120
Postprocessing Morphological Kernel 3x3, remove <50 Removes noise, smooths
closing VOX. boundaries
processing techniques can also minimize false positives 2. Improved haemorrhage border detection by

[18]. These improvements collectively make for a more
precise and clinically applicable segmentation model
[19]. Table 1 highlights the key contributions in the
paper. This paper presents a new segmentation model
for acute intracranial hemorrhage using a deep neural
network-based U-Net model enhanced by the addition of
an adaptive thresholding module. In contrast to current
methods, the proposed model dynamically adapts to
local CT intensity characteristics, allowing accurate
boundary identification across hemorrhage subtypes
[20]. The technique is validated using the RSNA ICH
dataset, which presents diverse and challenging clinical
scenarios. By overcoming the deficiencies of previous
models and integrating clinically = meaningful
enhancements, this work endeavors to provide a
pragmatic and scalable hemorrhage segmentation
solution for real-world emergency care environments
[21].

Using brain CT scans, Figure 1 illustrates the general
layout of the proposed cerebral hemorrhage
segmentation framework. In order to improve contrast
and exclude non-brain features like the skull, the input
CT image must first go through a preprocessing step
[22]. A 2.5D U-Net segmentation model is then used on
the improved image, yielding an initial hemorrhagic
region estimate. An adaptive thresholding module, which
dynamically adapts to local intensity and edge
information to enhance boundary accuracy, is employed
to further refine the initial segmentation [23]. AFollowing
this, a post-processing phase enhances the clarity of
subtype boundaries, smoothes contours, and
reducesnoise [24]. Each of the five haemorrhage
subtypes, epidural, intraparenchymal, intraventricular,
subarachnoid, and subdural, is distinguished by a
distinct colour for clinical interpretability. This pipeline
supports prompt and well-informed medical decision-
making by ensuring accurate, subtype-specific
haemorrhage identification. Main contributions of the
proposed work
1. Developed a deep learning system for accurate ICH

segmentation by combining adaptive thresholding

with a 2.5D U-Net.

introducing a dynamic, intensity-aware thresholding
technique.

3. With the use of anatomical priors and improved
postprocessing, subtype-specific  segmentation
across five haemorrhage types was accomplished.

4. Outperformed baseline models on the RSNA ICH
dataset in terms of dice score and boundary accuracy
(U-Net, DeepLabV3+).

The structure of the paper is as follows: Section 1
introduces the problem and motivation. Section 2
examines relevant research and identifies any gaps. The
suggested methodology, which includes adaptive
thresholding, the 2.5D U-Net, and preprocessing, is
described in depth in Section 3. The experimental setting
and evaluation measures are described in Section 4.
Results and comparisons are shown in Section 5. The
conclusion and recommendations for the future are
presented in Section 6.

Il. State-of-the-Art Techniques

The automated diagnosis of intracranial hemorrhage
(ICH) has kept pace with advances in high-resolution
medical imaging and the development of large
annotated databases. Previous approaches employed
rule-based systems and thresholding to identify
hyperdense areas indicative of acute bleeding. The
methods were susceptible to imaging artefacts, noise,
and overlap in intensities with neighboring tissues like
calcifications or bone. The advent of deep learning,
particularly convolutional neural networks, has
significantly enhanced hemorrhage detection and
segmentation by learning complex hierarchical features
from data. A new method developed a deep learning
algorithm for the autonomous detection and
classification of acute intracranial hemorrhages from
2D head CT scans. The model uses a convolutional
neural network to process each slice and employs a
decision-level fusion for subtype classification. The
study demonstrates robust performance in
discriminating between hemorrhage subtypes and
achieves accuracy comparable to that of experts.
However, it works on 2D data without considering
volumetric context, which could limit spatial

Manuscript received July 8, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 22, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1048

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1292


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1048
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.orqg; Vol. 7, No. 4, October 2025, pp: 1289-1302

e-ISSN: 2656-8632

consistency between slices [6]. [7] proposed a hybrid
model that integrates 3D convolutional networks and
Long Short-Term Memory (LSTM) units for intracranial
hemorrhage detection and classification. The approach
well extracts spatial and sequential features, enhancing
subtype discrimination. It is cost-effective and has high
performance even with small datasets. Nevertheless,
the complexity of integrating 3D-CNNs and LSTMs
boosts computational requirements during training.

[8] proposed a three-dimensional joint CNN-RNN
structure for accurate diagnosis of ICH and its
subtypes. It extracts the 3D features through
convolutional layers and models sequentially using
recurrent units, providing better accuracy than
conventional 2D methods. A major strength is that it
can maintain spatial dependencies, but it is
computationally expensive and memory-intensive,
which may degrade real-time performance. [9]
introduced a deep learning architecture for multi-type
hemorrhagic lesion detection and quantification based
on optimized 3D CNNSs. It is particularly optimized for
the analysis of traumatic brain injury and includes
lesion volume estimation. Though the method is sound
in lesion quantification, it is mostly optimized for trauma
cases, making it less generalizable to non-traumatic
hemorrhages. The methodology parameters used in
the proposed work are shown in Table 2. [10] presented
a deep convolutional model aimed at segmenting ICH
from CT images. The work adds a public data set and
benchmarks segmentation with standard CNN
architectures. The model is reproducible and easy to
understand, allowing for baseline comparisons;
however, it does not include sophisticated refinement
methods such as adaptive thresholding or attention.
This method presented a new CNN-based algorithm for
ICH detection and classification, employing diligently

more than segmentation or volumetric analysis and is
thus somewhat limited in its utility for surgery planning.
[11] created an ensemble deep neural network to
improve ICH detection and classification accuracy on
non-contrast CT scans. The method has high precision
and robustness due to the use of multiple models
together. Its ensemble design, while improving
robustness and precision, adds inference time and can
be less feasible for real-time urgency environments [12]
proposed a completely automatic 3D deep learning
model for hemorrhage segmentation in traumatic brain
injury. The proposed model takes volumetric CT input
and produces high Dice scores in segmentation
experiments. Although the technique is effective, its
dependence on trauma-specific databases may limit its
generalizability across other, broader ICH types. [13]
introduced a lightweight CNN-based framework for ICH
detection from brain CT scans with a focus on low-
complexity architectures for resource-limited settings.
The model is simple and easy to deploy at the cost of
sacrificing some of its segmentation accuracy due to
restricted depth and the absence of contextual
modeling. [14] introduced a deep learning architecture
with expert-level performance in detecting acute ICH
with head CT. The model was trained on a large,
diverse dataset to provide robust generalization. One
major strength lies in its extensive clinical validation;
however, the model is limited to classification, rather
than detailed segmentation or localization.

[15] proposed a fast deep neural network for the
automatic classification of ICH in brain CT scans. The
model strikes a balance between high accuracy and
computational speed, making it suitable for real-world
applications. However, the research does not proceed
to segmentation or volume estimation, which are
crucial for prognosis. It includes visualization features

Table 3. Performance Comparison with Existing Models

Study (Author, Year) Approach Task Dice Score
Burduja et al. (2020) [7] 3D CNN + LSTM Classification + 0.81
Subtyping
Ye et al. (2019) [8] 3D CNN-RNN Classification + 0.80
Subtyping

Phaphuangwittayakul et al.

Optimized 3D CNN

Lesion Detection + 0.82

(2022)[9] Volume Estimation

Hssayeni et al. (2020) [5] Basic CNN Segmentation 0.78
Segmentation

Inkeaw et al. (2022) [12] 3D Deep Segmentation 0.81

Segmentation

augmented training data to enhance generalizability.
Their model is strongly robust to subtypes and imaging
conditions. The work emphasizes binary classification

to further support physicians' interpretability. It is
especially helpful in low-resource environments;
nonetheless, limited training data can limit its
performance in complicated, multi-type hemorrhage
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cases [25]. Table 3 represents the performance
comparison. [16] introduced an explainable deep
learning approach for small dataset acute ICH
detection. Despite the performance, current
segmentation models are hindered by limitations,
including the inability to receive subtype-specific
training, imprecise lesion boundaries, and false
positives in bone and ventricle regions. Fixed
thresholding methods combined with CNN output often
misclassify low-intensity hemorrhages, and certain
models overfit to dominant bleeding patterns.
Generalizability —across scanners and patient
populations is also a question that remains open [17].
These limitations drive the importance of segmentation
models that learn dynamically to accommodate
intensity  variation and contextual anatomical
knowledge [18], [19]. The literature review highlights
that, despite numerous models for hemorrhage
detection and classification, proper subtype-specific
segmentation remains a challenging task. Non-
adaptive classical thresholding techniques are not
flexible, and the majority of deep learning models are
poor generalizers without extensive manual labelling
[20], [21]. Thus, this research presents a U-Net-based
segmentation model augmented with adaptive,
intensity-aware thresholding that adapts to local
anatomical context and enhances boundary definition.
This novel strategy will address the performance gap
between strong classification and clinically viable
segmentation.

lll. Proposed Work

The proposed intracranial hemorrhage segmentation
algorithm starts with the acquisition of axial slices in
non-contrast brain CT scans. Each slice is retrieved in
DICOM format and represented in a standard 2D

grayscale image. To preserve the anatomical
coherence of neighboring slices and optimize
computational efficiency, a 2.5D stack strategy is used.
This is achieved by joining a center slice to its direct
neighbors so that local 3D contextual information can
be retained without the need for full 3D volume
processing [22], [24]. The proposed work is
represented in Figs. 1a, 1b, and Fig. 2.

During preprocessing, several key procedures are
applied to improve the quality and consistency of the
input CT images while minimizing the influence of
irrelevant anatomical structures that could interfere with
accurate analysis. The first step typically involves skull
stripping, which removes high-density tissues such as
bone and surrounding soft tissue that appear
prominently on CT scans. Following skull stripping,
intensity normalization is applied to address variations
caused by different scanner settings, acquisition
protocols, and patient-specific  factors.  This
normalization can be performed using methods such as
min-max scaling, which linearly rescales pixel intensity
values to a fixed range (e.g., 0 to 1), or z-score
normalization, which standardizes pixel intensities
based on the mean and standard deviation within the
brain region, thereby reducing inter-scan variability and
improving the robustness of downstream algorithms.
To further enhance the visibility of hemorrhagic
regions, especially in areas where contrast is subtle or
low, contrast enhancement techniques are employed.
One widely used method is Contrast Limited Adaptive
Histogram Equalization (CLAHE), which improves local
contrast and highlights small differences in tissue
density without amplifying noise excessively. Another
common approach is windowing, where specific
intensity ranges are selected to optimize visualization;
for brain CT images, this typically involves applying a

Table 4. Quantitative Comparisons with Baselines

Model Dice (%) Precision Recall F1- p-
(%) (%) score value
U-Net 80.2 81.1 79.5 80.3 -
DeepLabV3+ 824 83.6 82.1 82.8 -
Proposed 2.5D U-Net + 86.1 87.2 85.6 86.4 0.0013
Adaptive
Table 5. Adaptive Thresholding vs Fixed Otsu

Subtype Otsu Dice (%) Adaptive Dice (%) A Improvement p-value
Subdural 79.3 85.2 +5.9 0.0021
Epidural 77.6 83.7 +6.1 0.0018
Intraparenchymal 80.1 86.4 +6.3 0.0015
Intraventricular 81.0 871 +6.1 0.0012
Subarachnoid 76.8 82.9 +6.1 0.0019
Average 79.0 85.5 +6.5 -
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window level around 40 and a window width of 80,
which enhances the contrast of brain parenchyma and
hemorrhages. These preprocessing steps collectively
ensure that the input images are standardized, high-
quality, and focused on relevant anatomical structures,
thereby facilitating more accurate and reliable
hemorrhage detection and segmentation [26], [27].
After preprocessing, the processed image stack is
propagated through a 2.5D U-Net architecture, which
serves as the backbone for segmentation. The encoder
branch of the U-Net extracts spatial hierarchies through
a chain of convolutional layers, ReLU activations, and
max-pooling layers to extract hemorrhage-related
features [28], [29], [30]. Skip connections retain high-
resolution features from every encoder block, which are
concatenated with decoder layers to preserve spatial
accuracy. The decoder then progressively reconstructs
the segmentation mask via successive upsampling and
convolution operations to produce a coarse probability
map with hemorrhage likelihood at every pixel [31],
[32]. Table 4 shows the Quantitative Comparisons with
Baselines.

A. Neural Field Dynamics with Diffusion
Eq. (1) [12] represents the neural field dynamics with
diffusion that assigns different attention weights to the
channels based on their importance, where ¢ is a
sigmoid function, W.. F, are the weights and biases and
F, is the feature map of the ¢ channel.

A =oW..F. + b.) (1)
Eq. (2) [12] feature correlation F, , A, is the product of
activation coefficients and feature values.

F.=A.F, (2)
Eq. (3) [13] the bounding box loss (L,,,) calculated as
the sum of squared differences between predicted and
ground truth box coordinates.

Lyox = 2 (Lovy- (G = 2D + (01 = 2)P) ()
where x; and y; represents the ground truth
coordinates of the i*" bounding box center and £, and
y, represents the predicted coordinates of the "
bounding box center. Eq. (4) [13] the classification loss
(Loass) using the negative log likelihood of the
predicted capabilities.

Leiass = Zévzl(lobj'pi-log (ﬁl)) 4)
Where p; represents the ground truth class probability
and p, represents the predicted class probability.

B. Forward EEG Model
Observed EEG is linked to sources by the lead-field is
represented in Eq. (5) [14]

y(t) = Ls(t) + &(t) 5)
where L € R™"™ maps sources vectors (s(t)) to m
scalp sensors and &(t) is sensor noise.

C. Diffusion Features

Low-dimensional diffusion-aware (@) features as
represented in Eq. (6) [15] are extracted by projecting

time-averaged  sources (UZ) onto  diffusion
eigenmodes:

1
0 = U7 GXl=15() (6)

where s(t) represents source vectors. Equation (6)
defines the computation of low-dimensional diffusion-
aware features (@) by projecting the time-averaged
neural source activities onto the diffusion eigenmodes
derived from the underlying neurophysiological
diffusion process. Here, @ represents the resultant
feature vector that encapsulates both spatial and
temporal neural information in a compact,
discriminative  form  suitable for  downstream
classification. The matrix U, denotes the diffusion
eigenmodes obtained from the eigendecomposition of
the diffusion operator (or graph Laplacian) constructed
over EEG source connectivity. These eigenmodes
capture intrinsic spatial diffusion patterns of neural
signal propagation across brain regions. The term UT
is the transpose of this eigenmode matrix, used for
projecting source activity into the diffusion subspace.
The expression s(t) refers to the source vector at time
t, representing the estimated neural activity from each
EEG source or channel at that moment. over the total
number of time points T, thus summarizing temporal
dynamics.

To complement the shortcomings in the CNN's

primary output, an adaptive thresholding module is
proposed. The module improves segmentation
precision by adaptively regulating thresholds based on
localized image features [33]. The CT slice is divided
into overlapping blocks, and intensity histograms are
calculated in every block to record the local distribution.
Concurrently, gradient-based boundary detection (via
Sobel or Canny filters) detects transition boundaries
characteristic of hemorrhage edges [34]. From this
combined data, a pixel-wise threshold is applied to
further refine the segmentation mask, particularly inin
heterogeneous bleeds or low-contrast situations.
Through this process, over-segmentation and under-
segmentation errors during the initial CNN prediction
are avoided [35].
The dice score measures the overlap between
predicted segmentation and ground truth as given in
Eq. (7) [12] loU measures the area of overlap divided
by the area of union as shown in Eq. (8) [13].

, __ 2x|PNG|
Dice = FIClo (7)

The Dice coefficient in the above equation quantifies
the degree of spatial overlap between the predicted
segmentation mask (P) and the ground truth mask (G).

. . 2|1PNG
It is calculated as che:|P'|+|G:, where | PN

G Irepresents the number of correctly predicted lesion
pixels (true positives), and | P | +| G | corresponds to
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the total number of predicted and actual lesion pixels.
A higher Dice score indicates a greater similarity
between the predicted and true regions.

loU = 224! (8)

|PUGI
The Intersection over Union (loU) measures the ratio

between the area of overlap and the area of union
IPNG|

between P and G, expressed as loU = poar Unlike
Dice, which is more sensitive to small overlaps, loU
provides a stricter evaluation by penalizing both over-
and under-segmentation.

The processed segmentation mask undergoes a critical
post-processing phase aimed at refining the output to
improve its clinical applicability and reliability. During
this stage, several operations are performed to
enhance the accuracy of lesion delineation and reduce
noise or irrelevant detections.

Eq. (9) [21] measures the maximum distance between
the boundary points of the predicted and ground truth
segmentations.

HD(P,G) = max{sup inf d(p, g),sup inf d(p,g)} (9)
PEP geG PEP geG

In the above equation, the Hausdorff Distance (HD)
quantifies the maximum spatial deviation between the
boundaries of the predicted segmentation (P) and the
ground truth segmentation (G), providing a robust
measure of boundary accuracy. Here, P denotes the
set of all boundary points belonging to the predicted
segmentation mask, while G represents the set of
boundary points from the ground truth mask. The term
d(p,g) indicates the Euclidean distance between a
boundary point p in the predicted mask and a boundary

point g in the ground truth. The operator inf d(p, g)
gEeG

computes the smallest distance from a predicted
boundary point p to the nearest boundary point in G,

capturing local proximity. Conversely, supinf d(p, g)
PEP geG

determines the greatest of these minimal distances
across all points in p, representing the worst-case
boundary deviation from prediction to ground truth.

value indicates that the predicted lesion boundary
closely aligns with the true lesion contour, signifying
higher segmentation precision and clinical reliability.

Initially, tiny isolated regions that fall below a predefined
area threshold are systematically removed. These
small components are typically considered false
positives, often resulting from noise or artifacts in the
image, and their removal helps in improving the overall
specificity of the system. Following this, morphological
operations are employed specifically, dilation followed
by erosion, a process known as morphological closing.
These operations serve to smooth the boundaries of
the segmented hemorrhagic regions, fill in small holes,
and connect fragmented areas that likely belong to a
single lesion, thus providing a more anatomically
plausible shape. In the final step, the cleaned and
smoothed mask is subjected to label mapping, wherein
each distinct segmented region is assigned to one of
the five hemorrhage subtypes: subdural, epidural,
intraparenchymal, intraventricular, or subarachnoid
[36]. Table 5 compares Adaptive Thresholding vs Fixed
Otsu. This classification is carried out using spatial
localization cues and anatomical context, ensuring that
the segmentation not only identifies the lesion but also
accurately categorizes it based on its position within the
brain. The output is a visually interpretable color-coded
segmentation mask on top of the original CT slice,
where clinicians can easily differentiate and identify
hemorrhage subtypes. The end-to-end pipeline not
only improves segmentation accuracy but also
provides clinically relevant insights for emergency
diagnosis and treatment planning in neurocritical care.
Figure 2 shows the comprehensive architecture of the
new intracranial hemorrhage segmentation framework
that is composed of six sequential modules functioning
cohesively from input to final output [37], [38]. The
methodology begins with Input CT Slice Acquisition,
where non-contrast axial CT slices are obtained and re-
stacked in a 2.5D format in order to maintain local
anatomical context. The input data are fed into the
Preprocessing Module, which carries out skull
stripping, intensity normalization, and contrast

Table 6. Error Analysis by Subtype

Subtype Common Error FP (%) FN (%) Likely Cause
Intraventricular Leakage into ventricles 4.8 6.2 CSF intensity overlap
Subarachnoid Missed thin streaks 5.3 71 Low contrast in sulci
Subdural Boundary overextension 4.1 5.9 Irregular crescent shape
Epidural Partial miss near skull 5.0 6.4 Artifact near bone edges

Similarly, the second term sup inf d(p, g) measures the
PEP geG

maximal minimal distance in the opposite direction,
from ground truth to prediction. Taking the maximum of
these two directional distances ensures a symmetric
evaluation of boundary error. Overall, a lower HD(P, G)

enhancement to normalize and render the hemorrhagic
areas clear [39], [40]. The output is given to a 2.5D U-
Net-based segmentation backbone (illustrated within
the Preprocessing block), which produces a preliminary
pixel-wise probability map of hemorrhage areas. The
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subsequent mask is further enhanced in the post-
processing Module, whereby small regions of artifacts
are eliminated and morphological smoothing is
performed to enhance spatial coherence. This is
achieved by employing the Adaptive Thresholding
Module, which dynamically adapts pixel-level
thresholds based on local intensity histograms and
gradient data to define lesion boundaries more clearly
[41]. Lastly, in the Output Generation Module, every
subtype of hemorrhage receives a distinct color label,
and the resultant final segmentation is superimposed

on the original CT image for simple visual
interpretation,  differentiating  between  epidural,
subdural, intraparenchymal, intraventricular, and

subarachnoid hemorrhages. Table 6 analyzes the error
subtypes.

IV. Results

The RSNA Intracranial Hemorrhage Detection dataset
consists of labelled brain CT slices used to determine
the presence and type of intracranial haemorrhage
(ICH). Each image is annotated with a generic "any"
haemorrhage label, indicating the presence of at least
one subtype, along with five binary labels (0 = absence,
1 = presence) corresponding to specific haemorrhage

types: intraparenchymal, intraventricular,
subarachnoid, subdural, and epidural. The dataset is
highly imbalanced, reflecting real-world clinical

distributions, with the majority of slices labelled as
negative. For instance, only 116 out of more than
25,000 images show epidural haemorrhage, while
intraparenchymal and subdural types are more
common, with 1,581 and 1,236 positive samples,
respectively. The "any" category includes 3,618
positive cases. This imbalance poses challenges for
model training and evaluation, necessitating the use of
appropriate performance metrics. The precision, recall,
and F1-score are calculated using standard definitions
as shown in Eq. (3) to (5), where TP, TN, FP, and FN
represent true positives, true negatives, false positives,
and false negatives, respectively. The dataset was split
into 70% training, 15% validation, and 15% testing.
Data augmentation included random flipping, rotations
(£15°), and intensity jitter. To avoid bias, all splits were
performed at the patient level, preventing data leakage.
These details ensure reproducibility.

Fig. 3 llustrates the distribution of individual
hemorrhage subtypes in the RSNA dataset, showing a
significant imbalance with very few positive cases,
especially for epidural hemorrhage. Fig. 4 presents the
overall label distribution, highlighting that non-
hemorrhagic slices (label 0) dominate the dataset,
comprising over 94% of the samples, while
hemorrhagic slices (label 1) account for a small
minority. This imbalance underscores the challenge in
training models to detect rare hemorrhage events.
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5. Discussion

The findings of this study demonstrate that the
proposed MM-GAT-CF model effectively integrates
multimodal information through a combination of graph
attention mechanisms, transformer encoders, and
contrastive fusion. Each component contributes
uniquely to the overall performance improvement
observed in the segmentation of brain tumors. The
graph attention module enhances spatial-contextual
reasoning by explicitly modeling the relationships
among tumor subregions, thereby capturing irregular
and heterogeneous boundaries that are often
challenging for traditional convolutional models. The

contrastive  fusion mechanism further refines
multimodal  alignment, reducing inter-modality
redundancy  while  preserving  complementary

diagnostic features across MRI sequences (T1, T1ce,
T2, and FLAIR). These synergies result in higher Dice
similarity coefficients and lower Hausdorff distances,
indicating that MM-GAT-CF produces more accurate
and topologically consistent segmentation outcomes.
This improvement is particularly evident in complex
tumor regions where boundaries are indistinct,
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suggesting that explicit graph-based relational
reasoning enhances spatial coherence in multimodal
medical imaging. Compared to prior transformer-based
architectures such as TransBTS and Swin-UNet
features [37,38]. MM-GAT-CF consistently
demonstrates superior performance across benchmark
datasets, as presented in Table 5. TransBTS employs
transformers primarily within the bottleneck stage to
capture sequence-level dependencies, whereas Swin-
UNet leverages hierarchical vision transformers for
patch-based feature extraction. However, both
methods lack explicit relational reasoning and
multimodal contrastive alignment, limiting their ability to
manage boundary ambiguity and cross-modality
inconsistencies. The current results align with recent
studies emphasizing that graph neural networks
(GNNs) can capture non-Euclidean  spatial
relationships more effectively than purely convolutional
or transformer-based methods.

Table 7. Proposed model comparison with state-of-
the-art methods

Model/ Task Key Dice
Architecture Focus Features Score
Combines
spatial (3D
EgTCMNN * Classification CNN)and .
& Subtyping temporal )
features [23]. (LSTM)
context
Integrates
3D CNN + Classification sequential
RNN & Subtvpin modeling for  0.80
features [25]. yping CT volume
analysis
- Lesion o
Optimized . Task-specific
3D CNN petection & - architecture  0.82
features [29]. Estimation tuning
Simple
Basic CNN . 2D/3D
features [33]. Segmentation convolutional 0.78
layers
Fully 3D
I\Pﬂr(c))g:lsed Segmentation %Cg[ri;tgr;el’ 0.81
modeling

Similarly, comparative literature in other domains
reinforces this trend. For example, in intracerebral
hemorrhage segmentation, incorporating 3D spatial
modeling substantially enhances volumetric
consistency. MM-GAT-CF builds upon these
advancements by fusing both spatial reasoning and
multimodal contrastive learning, leading to robust and
generalizable  tumor  delineation  performance.
Collectively, these comparisons highlight that progress

in segmentation accuracy arises not only from deeper
networks, but also from architectures that integrate
contextual reasoning, feature alignment, and modality-
specific representations within a unified framework.
The implications of these findings extend beyond
performance metrics. Table 7 compares proposed
model with state of art methods.

The proposed MM-GAT-CF framework offers a
pathway toward more clinically reliable and
interpretable  segmentation  systems.  Improved
delineation of small, heterogeneous tumor regions can
enhance diagnostic precision, assist radiologists in pre-
surgical planning, and facilitate longitudinal treatment
monitoring. Moreover, the demonstrated effectiveness
of contrastive multimodal fusion suggests a broader
potential application for aligning heterogeneous
medical data sources, an emerging need in radiomics
and precision oncology. The model’s adaptability could
also benefit other multimodal imaging domains, such
as prostate cancer detection or cardiac MRI
segmentation, where spatial continuity and modality
interaction are equally critical. Furthermore, the study
contributes to the growing body of evidence supporting
the synergy of graph transformers as a foundation for
next-generation multimodal networks. This hybrid
paradigm can improve not only accuracy but also
model interpretability by enabling more explicit
visualization of inter-region dependencies and attention
patterns. Despite its strengths, the MM-GAT-CF model
presents several limitations. First, integrating graph
attention with transformer encoders increases
computational complexity, leading to longer training
times and higher GPU memory consumption, which
may hinder deployment in resource-limited clinical
environments [39, 40]. Second, the model assumes the
availability of complete multimodal MRI inputs; missing
or corrupted modalities can degrade segmentation
performance. Future work should explore modality-
agnostic  learning  frameworks, self-supervised
pretraining, or data imputation strategies to address
incomplete imaging scenarios. Third, the current
evaluation was primarily conducted on the BraTS
benchmark datasets, which, although standardized, do
not capture the full variability of real-world clinical data.
External validation across multiple institutions,
scanners, and patient populations is necessary to
confirm model generalization features [41, 42].
Additionally, the interpretability of the fused graph-
transformer representations remains limited. Future
research should incorporate explainable Al (XAl)
techniques, such as attention heatmaps, graph
saliency visualization, or uncertainty estimation, to
improve clinical trust and transparency.

V. Conclusion
This study tackles the critical challenge of accurately
segmenting intracranial hemorrhages (ICH) from brain
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CT scans, a task complicated by poor boundary
localization, severe class imbalance, and low contrast
between hemorrhagic and normal tissues.
Conventional thresholding techniques and deep
learning models, such as U-Net and DeeplLabV3+,
often fail to detect small or overlapping bleeds and are
prone to false positives near bone structures due to
intensity similarities. To address these shortcomings,
the proposed approach introduces a 2.5D U-Net
architecture integrated with an adaptive thresholding
module that dynamically responds to local intensity
variations and edge transitions, thereby improving
pixel-level accuracy in segmenting five ICH subtypes.
The framework further incorporates preprocessing
steps such as skull stripping and contrast enhancement
to improve input quality, followed by post processing
techniques for refining segmentation outputs and
assigning subtype labels, resulting in a more robust and
clinically reliable solution. Experimental findings on the
RSNA dataset demonstrate enhanced performance,
with the proposed method achieving a Dice score of
0.83 and outperforming baseline models in terms of
accuracy, precision, and recall. This confirms the
clinical value of the technique in emergency
neuroimaging pipelines. As future research, the model
will be expanded with transformer-based attention
mechanisms and tested on multi-institutional datasets
to enhance broader generalizability.
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