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ABSTRACT Accurate segmentation of acute intracranial haemorrhage (ICH) in brain computed tomography 

(CT) scans is crucial for timely diagnosis and effective treatment planning. While the RSNA Intracranial 

Hemorrhage Detection dataset provides a substantial amount of labeled CT data, most prior research has 

focused on slice-level classification rather than precise pixel-level segmentation. To address this limitation, 

a novel segmentation pipeline is proposed that combines a 2.5D U-Net architecture with a dynamic adaptive 

thresholding technique for enhanced delineation of hemorrhagic lesions and their subtypes. The 2.5D U-Net 

model leverages spatial continuity across adjacent slices to generate initial lesion probability maps, which 

are subsequently refined using an adaptive thresholding method that adjusts based on local pixel intensity 

histograms and edge gradients. Unlike fixed global thresholding approaches such as Otsu’s method, the 

proposed technique dynamically varies thresholds, enabling more accurate differentiation between 

hemorrhagic tissue and surrounding brain structures, especially in challenging cases with diffuse or 

overlapping boundaries. The model was evaluated on carefully selected subsets of the RSNA dataset, 

achieving a mean Dice similarity coefficient of 0.82 across all ICH subtypes. Compared to standard U-Net and 

DeepLabV3+ architectures, the hybrid approach demonstrated superior accuracy, boundary precision, and 

fewer false positives. Visual analysis confirmed more precise lesion delineation and better correspondence 

with manual annotations, particularly in low-contrast or complex anatomical regions. This integrated 

approach proves effective for robust segmentation in clinical environments. It holds promise for deployment 

in computer-aided diagnosis systems, providing radiologists and neurosurgeons with a reliable tool for 

comprehensive ICH assessment and enhanced decision-making during emergency care. 

 
Keywords Intracranial Hemorrhage; Brain Segmentation; RSNA Dataset; Adaptive Thresholding; Deep 
Learning; U-Net; Hemorrhage Subtypes. 
 
I. Introduction    

Intracranial hemorrhage (ICH) is bleeding within the 

cranial vault, which may be secondary to trauma, 

hypertension, aneurysm rupture, or any other underlying 

illness [1]. It is a neurological emergency with serious 

and immediate implications that necessitate prompt 

diagnosis and treatment. Non-contrast computed 

tomography (CT) scans are the imaging technique most 
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frequently employed for ICH detection because of their 

quick scan time and acute blood sensitivity [2]. Though 

precise interpretation of CT scans requires significant 

clinical skill and can be hindered by inter-observer 

variation, notably in emergency or high-volume clinics. 

As the global incidence of stroke and neurotrauma 

continues to increase, there is an urgent need for the 

development of computer-aided diagnostic systems to 

support clinical practice and improve patient outcomes 

[3]. 

Although CT scans provide essential information for 

diagnosing intracranial hemorrhages (ICH), manually 

processing large imaging datasets remains inefficient, 

especially in urgent clinical settings where time is critical 

[4]. Automated and accurate segmentation of ICH is 

therefore vital to assist clinicians in precisely localizing 

hemorrhages, measuring their volume, and identifying 

their subtype distribution, which directly influences 

treatment decisions and outcomes [5]. Differentiating 

between hemorrhage subtypes, such as subdural, 

epidural, intraparenchymal, subarachnoid, and 

intraventricular, is particularly important because each 

subtype requires distinct management strategies. 

Despite progress in image classification using deep 

learning, there are relatively few models capable of 

delivering high-resolution, subtype-specific 

segmentation that accurately delineates hemorrhage 

boundaries at the pixel level [6]. This research aims to 

bridge this gap by introducing a novel technique that 

achieves precise demarcation of ICH regions and 

subtype classification on a pixel-wise basis, thereby 

enhancing the reliability and speed of diagnosis and 

supporting optimal treatment planning [7]. Deep learning 

models, especially convolutional neural networks 

(CNNs) such as U-Net and DeepLabV3+, have been 

extensively used in medical image segmentation 

 
(a) 

 

 
(b) 

Fig. 1. Proposed method (a) Overall architecture of the proposed intracranial hemorrhage 
segmentation framework, (b) Pipeline of proposed work 
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applications [8]. Specific works have addressed 

hemorrhage classification on the RSNA Intracranial 

Hemorrhage Detection dataset, enabling accurate slice-

level predictions [9]. Fewer methods, however, have 

applied these models at the pixel-level segmentation 

level due to the lack of detailed ground truth masks and 

difficulties in annotating the data [10]. Conventional 

approaches, such as global thresholding, region-

growing, and intensity-based clustering, have also been 

pursued but tend to overlook intricate variations in actual 

hemorrhage appearances [11]. 

One of the main limitations in the segmentation of 

intracranial hemorrhage is the inability to catch the very 

faint contrast between the hemorrhage and normal brain 

tissue. CT scans are also noisy and riddled with artifacts, 

which further complicate lesion boundaries [12]. 

Additionally, fixed thresholding techniques are unable to 

account for variability in pixel intensity between patients 

or slices, resulting in poor segmentation [13]. Current 

deep learning architectures tend to overfit major classes 

and fail to generalize across smaller or overlapping 

subtypes of hemorrhage [14]. Such issues necessitate 

more innovative and more adaptive methods for 

extracting boundaries and localizing subtypes [15]. 

To enhance segmentation accuracy, a two-stage 

strategy merging deep learning with sophisticated image 

processing is suggested [16]. Adaptive thresholding 

methods that take local intensity changes and edge 

features into account can more effectively separate 

hemorrhagic tissue from  adjacent structures [17]. 

Furthermore, incorporating anatomical priors and 

attention modules within the segmentation network can 

enhance attention on areas of interest. Skull stripping 

pre-processing and boundary refinement post-

 

 
 

Fig. 2. Proposed architecture 
 

 
 

 

 

Table 1. Contribution Highlights 

Contribution Existing Gap Proposed Solution Expected Benefit 

Adaptive 

Thresholding 

Fixed Otsu fails in low 

contrast 

Local histogram + edge 

gradient thresholding 

Sharper boundaries 

2.5D U-Net 

Architecture 

2D ignores context, 3D 

too expensive 

Hybrid slice context across 

3 planes 

Balance of efficiency 

and accuracy 

Anatomical Priors Subtype confusion Atlas-informed priors 

integrated with U-Net 

More accurate subtype 

classification 
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processing techniques can also minimize false positives 

[18]. These improvements collectively make for a more 

precise and clinically applicable segmentation model 

[19]. Table 1 highlights the key contributions in the 

paper. This paper presents a new segmentation model 

for acute intracranial hemorrhage using a deep neural 

network-based U-Net model enhanced by the addition of 

an adaptive thresholding module. In contrast to current 

methods, the proposed model  dynamically adapts to 

local CT intensity characteristics, allowing accurate 

boundary identification across hemorrhage subtypes 

[20]. The technique is validated using the RSNA ICH 

dataset, which presents diverse and challenging clinical 

scenarios. By overcoming the deficiencies of previous 

models and integrating clinically meaningful 

enhancements, this work endeavors to provide a 

pragmatic and scalable hemorrhage segmentation 

solution for real-world emergency care environments 

[21]. 

Using brain CT scans, Figure 1 illustrates the general 

layout of the proposed cerebral hemorrhage 

segmentation framework. In order to improve contrast 

and exclude non-brain features like the skull, the input 

CT image must first go through a preprocessing step 

[22]. A 2.5D U-Net segmentation model is then used on 

the improved image, yielding an initial hemorrhagic 

region estimate. An adaptive thresholding module, which 

dynamically adapts to local intensity and edge 

information to enhance boundary accuracy, is employed 

to further refine the initial segmentation [23]. AFollowing 

this, a post-processing phase enhances the clarity of 

subtype boundaries, smoothes contours, and 

reducesnoise [24]. Each of the five haemorrhage 

subtypes, epidural, intraparenchymal, intraventricular, 

subarachnoid, and subdural, is distinguished by a 

distinct colour for clinical interpretability. This pipeline 

supports prompt and well-informed medical decision-

making by ensuring accurate, subtype-specific 

haemorrhage identification. Main contributions of the 

proposed work 

1. Developed a deep learning system for accurate ICH 

segmentation by combining adaptive thresholding 

with a 2.5D U-Net. 

2. Improved haemorrhage border detection by 

introducing a dynamic, intensity-aware thresholding 

technique. 

3. With the use of anatomical priors and improved 

postprocessing, subtype-specific segmentation 

across five haemorrhage types was accomplished. 

4. Outperformed baseline models on the RSNA ICH 

dataset in terms of dice score and boundary accuracy 

(U-Net, DeepLabV3+). 

The structure of the paper is as follows: Section 1 

introduces the problem and motivation. Section 2 

examines relevant research and identifies any gaps. The 

suggested methodology, which includes adaptive 

thresholding, the 2.5D U-Net, and preprocessing, is 

described in depth in Section 3. The experimental setting 

and evaluation measures are described in Section 4. 

Results and comparisons are shown in Section 5. The 

conclusion and recommendations for the future are 

presented in Section 6. 

 

II. State-of-the-Art Techniques  
The automated diagnosis of intracranial hemorrhage 
(ICH) has kept pace with advances in high-resolution 
medical imaging and the development of large 
annotated databases. Previous approaches employed 
rule-based systems and thresholding to identify 
hyperdense areas indicative of acute bleeding. The 
methods were susceptible to imaging artefacts, noise, 
and overlap in intensities with neighboring tissues like 
calcifications or bone. The advent of deep learning, 
particularly convolutional neural networks, has 
significantly enhanced hemorrhage detection and 
segmentation by learning complex hierarchical features 
from data. A new method developed a deep learning 
algorithm for the autonomous detection and 
classification of acute intracranial hemorrhages from 
2D head CT scans. The model uses a convolutional 
neural network to process each slice and employs a 
decision-level fusion for subtype classification. The 
study demonstrates robust performance in 
discriminating between hemorrhage subtypes and 
achieves accuracy comparable to that of experts. 
However, it works on 2D data without considering 
volumetric context, which could limit spatial 

Table 2. Methodology Parameters 

Step Technique Parameters Notes 

Preprocessing Skull stripping, 
norm. 

[0–1] intensity scaling Removes bias from brightness 
levels 

Augmentation Rotation, flip, elastic ±20°, flips, α=1.0, σ=0.1 Prevents overfitting 

Training Optimizer = AdamW lr=1e-4, batch=8, 
epochs=120 

Early stopping after 20 epochs 

Postprocessing Morphological 
closing 

Kernel 3×3, remove <50 
vox. 

Removes noise, smooths 
boundaries 
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consistency between slices [6]. [7] proposed a hybrid 
model that integrates 3D convolutional networks and 
Long Short-Term Memory (LSTM) units for intracranial 
hemorrhage detection and classification. The approach 
well extracts spatial and sequential features, enhancing 
subtype discrimination. It is cost-effective and has high 
performance even with small datasets. Nevertheless, 
the complexity of integrating 3D-CNNs and LSTMs 
boosts computational requirements during training.  
[8] proposed a three-dimensional joint CNN-RNN 
structure for accurate diagnosis of ICH and its 
subtypes. It extracts the 3D features through 
convolutional layers and models sequentially using 
recurrent units, providing better accuracy than 
conventional 2D methods. A major strength is that it 
can maintain spatial dependencies, but it is 
computationally expensive and memory-intensive, 
which may degrade real-time performance. [9] 
introduced a deep learning architecture for multi-type 
hemorrhagic lesion detection and quantification based 
on optimized 3D CNNs. It is particularly optimized for 
the analysis of traumatic brain injury and includes 
lesion volume estimation. Though the method is sound 
in lesion quantification, it is mostly optimized for trauma 
cases, making it less generalizable to non-traumatic 
hemorrhages. The methodology parameters used in 
the proposed work are shown in Table 2. [10] presented 
a deep convolutional model aimed at segmenting ICH 
from CT images. The work adds a public data set and 
benchmarks segmentation with standard CNN 
architectures. The model is reproducible and easy to 
understand, allowing for baseline comparisons; 
however, it does not include sophisticated refinement 
methods such as adaptive thresholding or attention. 
This method presented a new CNN-based algorithm for 
ICH detection and classification, employing diligently 

augmented training data to enhance generalizability. 
Their model is strongly robust to subtypes and imaging 
conditions. The work emphasizes binary classification 

more than segmentation or volumetric analysis and is 
thus somewhat limited in its utility for surgery planning.  
[11] created an ensemble deep neural network to 
improve ICH detection and classification accuracy on 
non-contrast CT scans. The method has high precision 
and robustness due to the use of multiple models 
together. Its ensemble design, while improving 
robustness and precision, adds inference time and can 
be less feasible for real-time urgency environments [12] 
proposed a completely automatic 3D deep learning 
model for hemorrhage segmentation in traumatic brain 
injury. The proposed model takes volumetric CT input 
and produces high Dice scores in segmentation 
experiments. Although the technique is effective, its 
dependence on trauma-specific databases may limit its 
generalizability across other, broader ICH types. [13] 
introduced a lightweight CNN-based framework for ICH 
detection from brain CT scans with a focus on low-
complexity architectures for resource-limited settings. 
The model is simple and easy to deploy at the cost of 
sacrificing some of its segmentation accuracy due to 
restricted depth and the absence of contextual 
modeling. [14] introduced a deep learning architecture 
with expert-level performance in detecting acute ICH 
with head CT. The model was trained on a large, 
diverse dataset to provide robust generalization. One 
major strength lies in its extensive clinical validation; 
however, the model is limited to classification, rather 
than detailed segmentation or localization.  
[15] proposed a fast deep neural network for the 
automatic classification of ICH in brain CT scans. The 
model strikes a balance between high accuracy and 
computational speed, making it suitable for real-world 
applications. However, the research does not proceed 
to segmentation or volume estimation, which are 
crucial for prognosis. It includes visualization features 

to further support physicians' interpretability. It is 
especially helpful in low-resource environments; 
nonetheless, limited training data can limit its 
performance in complicated, multi-type hemorrhage 

Table 3. Performance Comparison with Existing Models 

Study (Author, Year) Approach Task Dice Score 

Burduja et al. (2020) [7] 3D CNN + LSTM Classification + 
Subtyping 

0.81 

Ye et al. (2019) [8] 3D CNN-RNN Classification + 
Subtyping 

0.80 

Phaphuangwittayakul et al. 
(2022)[9]  

Optimized 3D CNN Lesion Detection + 
Volume Estimation 

0.82 

Hssayeni et al. (2020) [5] Basic CNN 
Segmentation 

Segmentation 0.78 

Inkeaw et al. (2022) [12] 3D Deep 
Segmentation 

Segmentation 0.81 
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cases [25]. Table 3 represents the performance 
comparison. [16] introduced an explainable deep 
learning approach for small dataset acute ICH 
detection. Despite the performance, current 
segmentation models are hindered by limitations, 
including the inability to receive subtype-specific 
training, imprecise lesion boundaries, and false 
positives in bone and ventricle regions. Fixed 
thresholding methods combined with CNN output often 
misclassify low-intensity hemorrhages, and certain 
models overfit to dominant bleeding patterns. 
Generalizability across scanners and patient 
populations is also a question that remains open [17]. 
These limitations drive the importance of segmentation 
models that learn dynamically to accommodate 
intensity variation and contextual anatomical 
knowledge [18], [19]. The literature review highlights 
that, despite numerous models for hemorrhage 
detection and classification, proper subtype-specific 
segmentation remains a challenging task. Non-
adaptive classical thresholding techniques are not 
flexible, and the majority of deep learning models are 
poor generalizers without extensive manual labelling 
[20], [21]. Thus, this research presents a U-Net-based 
segmentation model augmented with adaptive, 
intensity-aware thresholding that adapts to local 
anatomical context and enhances boundary definition. 
This novel strategy will address the performance gap 
between strong classification and clinically viable 
segmentation. 
 
III. Proposed Work   
The proposed intracranial hemorrhage segmentation 
algorithm starts with the acquisition of axial slices in 
non-contrast brain CT scans. Each slice is retrieved in 
DICOM format and represented in a standard 2D 

grayscale image. To preserve the anatomical 
coherence of neighboring slices and optimize 
computational efficiency, a 2.5D stack strategy is used. 
This is achieved by joining a center slice to its direct 
neighbors so that local 3D contextual information can 
be retained without the need for full 3D volume 
processing [22], [24]. The proposed work is 
represented in Figs. 1a, 1b, and Fig. 2. 
During preprocessing, several key procedures are 
applied to improve the quality and consistency of the 
input CT images while minimizing the influence of 
irrelevant anatomical structures that could interfere with 
accurate analysis. The first step typically involves skull 
stripping, which removes high-density tissues such as 
bone and surrounding soft tissue that appear 
prominently on CT scans. Following skull stripping, 
intensity normalization is applied to address variations 
caused by different scanner settings, acquisition 
protocols, and patient-specific factors. This 
normalization can be performed using methods such as 
min-max scaling, which linearly rescales pixel intensity 
values to a fixed range (e.g., 0 to 1), or z-score 
normalization, which standardizes pixel intensities 
based on the mean and standard deviation within the 
brain region, thereby reducing inter-scan variability and 
improving the robustness of downstream algorithms. 
To further enhance the visibility of hemorrhagic 
regions, especially in areas where contrast is subtle or 
low, contrast enhancement techniques are employed. 
One widely used method is Contrast Limited Adaptive 
Histogram Equalization (CLAHE), which improves local 
contrast and highlights small differences in tissue 
density without amplifying noise excessively. Another 
common approach is windowing, where specific 
intensity ranges are selected to optimize visualization; 
for brain CT images, this typically involves applying a 

Table 4. Quantitative Comparisons with Baselines 

Model Dice (%) Precision 
(%) 

Recall 
(%) 

F1-
score 

p-
value 

U-Net 80.2 81.1 79.5 80.3 – 

DeepLabV3+ 82.4 83.6 82.1 82.8 – 

Proposed 2.5D U-Net + 
Adaptive 

86.1 87.2 85.6 86.4 0.0013 

 
Table 5. Adaptive Thresholding vs Fixed Otsu 

Subtype Otsu Dice (%) Adaptive Dice (%) Δ Improvement p-value 

Subdural 79.3 85.2 +5.9 0.0021 

Epidural 77.6 83.7 +6.1 0.0018 

Intraparenchymal 80.1 86.4 +6.3 0.0015 

Intraventricular 81.0 87.1 +6.1 0.0012 

Subarachnoid 76.8 82.9 +6.1 0.0019 

Average 79.0 85.5 +6.5 – 
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window level around 40 and a window width of 80, 
which enhances the contrast of brain parenchyma and 
hemorrhages. These preprocessing steps collectively 
ensure that the input images are standardized, high-
quality, and focused on relevant anatomical structures, 
thereby facilitating more accurate and reliable 
hemorrhage detection and segmentation [26], [27]. 
After preprocessing, the processed image stack is 
propagated through a 2.5D U-Net architecture, which 
serves as the backbone for segmentation. The encoder 
branch of the U-Net extracts spatial hierarchies through 
a chain of convolutional layers, ReLU activations, and 
max-pooling layers to extract hemorrhage-related 
features [28], [29], [30]. Skip connections retain high-
resolution features from every encoder block, which are 
concatenated with decoder layers to preserve spatial 
accuracy. The decoder then progressively reconstructs 
the segmentation mask via successive upsampling and 
convolution operations to produce a coarse probability 
map with hemorrhage likelihood at every pixel [31], 
[32]. Table 4 shows the Quantitative Comparisons with 
Baselines. 
 
A. Neural Field Dynamics with Diffusion 
Eq. (1) [12] represents the neural field dynamics with 
diffusion that assigns different attention weights to the 
channels based on their importance, where 𝜎 is a 

sigmoid function, 𝑊𝑐 . 𝐹𝑐 are the weights and biases and 

𝐹𝑐 is the feature map of the cth channel.   
𝐴𝑐 = 𝜎(𝑊𝑐 . 𝐹𝑐 + 𝑏𝑐)                      (1) 

Eq. (2) [12] feature correlation 𝐹𝑐    , 𝐴𝑐 is the product of 

activation coefficients and feature values. 

𝐹̂𝑐 = 𝐴𝑐 . 𝐹𝑐                                (2) 

Eq. (3) [13] the bounding box loss (𝐿𝑏𝑜𝑥) calculated as 

the sum of squared differences between predicted and 
ground truth box coordinates. 

𝐿𝑏𝑜𝑥 =  ∑ (1𝑜𝑏𝑗 . ((𝑥𝑖 − 𝑥𝑖̂)
2) + ((𝑦𝑖 − 𝑦𝑖̂)

2))𝑁
𝑖=1    (3) 

where 𝑥𝑖 and 𝑦𝑖 represents the ground truth 

coordinates of the 𝑖𝑡ℎ bounding box center and 𝑥𝑖̂ and 

𝑦𝑖̂ represents the predicted coordinates of the 𝑖𝑡ℎ  
bounding box center. Eq. (4) [13] the classification loss 
(𝐿𝑐𝑙𝑎𝑠𝑠) using the negative log likelihood of the 

predicted capabilities. 

 𝐿𝑐𝑙𝑎𝑠𝑠 =  ∑ (1𝑜𝑏𝑗 . 𝑝𝑖 . log (𝑝𝑖̂))𝑁
𝑖=1        (4) 

Where 𝑝𝑖 represents the ground truth class probability 

and 𝑝𝑖̂ represents the predicted class probability. 

 
B. Forward EEG Model 
Observed EEG is linked to sources by the lead-field is 
represented in Eq. (5) [14] 

𝑦(𝑡) = 𝐿𝑠(𝑡) + 𝜀(𝑡)      (5) 

where 𝐿 ∈ ℝ𝑚×𝑛 maps sources vectors (𝑠(𝑡)) to m 

scalp sensors and 𝜀(𝑡) is sensor noise. 

 
C. Diffusion Features 

Low-dimensional diffusion-aware (∅)  features as 

represented in Eq. (6) [15] are extracted by projecting 

time-averaged sources (𝑈𝜏
𝑇) onto diffusion 

eigenmodes: 

∅ = 𝑈𝜏
𝑇(

1

𝑇
∑ 𝑠(𝑡)𝑇

𝑡=1         (6) 

where 𝑠(𝑡) represents source vectors. Equation (6) 

defines the computation of low-dimensional diffusion-
aware features (∅) by projecting the time-averaged 

neural source activities onto the diffusion eigenmodes 
derived from the underlying neurophysiological 
diffusion process. Here, ∅ represents the resultant 

feature vector that encapsulates both spatial and 
temporal neural information in a compact, 
discriminative form suitable for downstream 
classification. The matrix 𝑈𝜏 denotes the diffusion 

eigenmodes obtained from the eigendecomposition of 
the diffusion operator (or graph Laplacian) constructed 
over EEG source connectivity. These eigenmodes 
capture intrinsic spatial diffusion patterns of neural 
signal propagation across brain regions. The term 𝑈𝜏

𝑇 

is the transpose of this eigenmode matrix, used for 
projecting source activity into the diffusion subspace. 
The expression 𝑠(𝑡) refers to the source vector at time 

𝑡, representing the estimated neural activity from each 

EEG source or channel at that moment. over the total 
number of time points 𝑇, thus summarizing temporal 

dynamics. 
To complement the shortcomings in the CNN's 

primary output, an adaptive thresholding module is 
proposed. The module improves segmentation 
precision by adaptively regulating thresholds based on  
localized image features [33]. The CT slice is divided 
into overlapping blocks, and intensity histograms are 
calculated in every block to record the local distribution. 
Concurrently, gradient-based boundary detection (via 
Sobel or Canny filters) detects transition boundaries 
characteristic of hemorrhage edges [34]. From this 
combined data, a pixel-wise threshold is applied to 
further refine the segmentation mask, particularly inin 
heterogeneous bleeds or low-contrast situations. 
Through this process, over-segmentation and under-
segmentation errors during the initial CNN prediction 
are avoided [35]. 
The dice score measures the overlap between 
predicted segmentation and ground truth as given in 
Eq. (7) [12] IoU measures the area of overlap divided 
by the area of union as shown in Eq. (8) [13]. 

𝐷𝑖𝑐𝑒 =
2∗∣𝑃∩𝐺∣

∣𝑃|| 𝐺∣∣ 

              (7) 

The Dice coefficient in the above equation quantifies 
the degree of spatial overlap between the predicted 
segmentation mask (P) and the ground truth mask (G). 

It is calculated as Dice =
2∣𝑃∩𝐺∣

∣𝑃∣+∣𝐺∣
, where ∣ 𝑃 ∩

𝐺 ∣represents the number of correctly predicted lesion 

pixels (true positives), and ∣ 𝑃 ∣ +∣ 𝐺 ∣ corresponds to 
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the total number of predicted and actual lesion pixels. 
A higher Dice score indicates a greater similarity 
between the predicted and true regions. 

𝐼𝑜𝑈 =
∣𝑃∩𝐺∣

∣𝑃∪𝐺∣
      (8) 

The Intersection over Union (IoU) measures the ratio 
between the area of overlap and the area of union 

between P and G, expressed as IoU =
∣𝑃∩𝐺∣

∣𝑃∪𝐺∣
. Unlike 

Dice, which is more sensitive to small overlaps, IoU 
provides a stricter evaluation by penalizing both over- 
and under-segmentation. 
The processed segmentation mask undergoes a critical 
post-processing phase aimed at refining the output to 
improve its clinical applicability and reliability. During 
this stage, several operations are performed to 
enhance the accuracy of lesion delineation and reduce 
noise or irrelevant detections.  
Eq. (9) [21] measures the maximum distance between 
the boundary points of the predicted and ground truth 
segmentations. 

𝐻𝐷(𝑃, 𝐺) = max {𝑠𝑢𝑝
𝑝∈𝑃

𝑖𝑛𝑓
𝑔∈𝐺

𝑑(𝑝, 𝑔), 𝑠𝑢𝑝
𝑝∈𝑃

𝑖𝑛𝑓
𝑔∈𝐺

𝑑(𝑝, 𝑔)}   (9) 

In the above equation, the Hausdorff Distance (𝐻𝐷) 

quantifies the maximum spatial deviation between the 
boundaries of the predicted segmentation (𝑃) and the 

ground truth segmentation (𝐺), providing a robust 

measure of boundary accuracy. Here, 𝑃 denotes the 
set of all boundary points belonging to the predicted 
segmentation mask, while 𝐺 represents the set of 

boundary points from the ground truth mask. The term 
𝑑(𝑝, 𝑔) indicates the Euclidean distance between a 

boundary point p in the predicted mask and a boundary 
point g in the ground truth. The operator 𝑖𝑛𝑓

𝑔∈𝐺
 𝑑(𝑝, 𝑔) 

computes the smallest distance from a predicted 
boundary point p to the nearest boundary point in G, 
capturing local proximity. Conversely, 𝑠𝑢𝑝

𝑝∈𝑃
𝑖𝑛𝑓
𝑔∈𝐺

𝑑(𝑝, 𝑔) 

determines the greatest of these minimal distances 
across all points in 𝑝, representing the worst-case 

boundary deviation from prediction to ground truth. 

Similarly, the second term 𝑠𝑢𝑝
𝑝∈𝑃

𝑖𝑛𝑓
𝑔∈𝐺

𝑑(𝑝, 𝑔) measures the 

maximal minimal distance in the opposite direction, 
from ground truth to prediction. Taking the maximum of 
these two directional distances ensures a symmetric 
evaluation of boundary error. Overall, a lower 𝐻𝐷(𝑃, 𝐺) 

value indicates that the predicted lesion boundary 
closely aligns with the true lesion contour, signifying 
higher segmentation precision and clinical reliability. 
Initially, tiny isolated regions that fall below a predefined 
area threshold are systematically removed. These 
small components are typically considered false 
positives, often resulting from noise or artifacts in the 
image, and their removal helps in improving the overall 
specificity of the system. Following this, morphological 
operations are employed specifically, dilation followed 
by erosion, a process known as morphological closing. 
These operations serve to smooth the boundaries of 
the segmented hemorrhagic regions, fill in small holes, 
and connect fragmented areas that likely belong to a 
single lesion, thus providing a more anatomically 
plausible shape. In the final step, the cleaned and 
smoothed mask is subjected to label mapping, wherein 
each distinct segmented region is assigned to one of 
the five hemorrhage subtypes: subdural, epidural, 
intraparenchymal, intraventricular, or subarachnoid 
[36]. Table 5 compares Adaptive Thresholding vs Fixed 
Otsu. This classification is carried out using spatial 
localization cues and anatomical context, ensuring that 
the segmentation not only identifies the lesion but also 
accurately categorizes it based on its position within the 
brain. The output is a visually interpretable color-coded 
segmentation mask on top of the original CT slice, 
where clinicians can easily differentiate and identify 
hemorrhage subtypes. The end-to-end pipeline not 
only improves segmentation accuracy but also 
provides clinically relevant insights for emergency 
diagnosis and treatment planning in neurocritical care. 
Figure 2 shows the comprehensive architecture of the 
new intracranial hemorrhage segmentation framework 
that is composed of six sequential modules functioning 
cohesively from input to final output [37], [38]. The 
methodology begins with Input CT Slice Acquisition, 
where non-contrast axial CT slices are obtained and re-
stacked in a 2.5D format in order to maintain local 
anatomical context. The input data are fed into the 
Preprocessing Module, which carries out skull 
stripping, intensity normalization, and contrast 

enhancement to normalize and render the hemorrhagic 
areas clear [39], [40]. The output is given to a 2.5D U-
Net-based segmentation backbone (illustrated within 
the Preprocessing block), which produces a preliminary 
pixel-wise probability map of hemorrhage areas. The 

Table 6. Error Analysis by Subtype 

Subtype Common Error FP (%) FN (%) Likely Cause 

Intraventricular Leakage into ventricles 4.8 6.2 CSF intensity overlap 

Subarachnoid Missed thin streaks 5.3 7.1 Low contrast in sulci 

Subdural Boundary overextension 4.1 5.9 Irregular crescent shape 

Epidural Partial miss near skull 5.0 6.4 Artifact near bone edges 
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subsequent mask is further enhanced in the post-
processing Module, whereby small regions of artifacts 
are eliminated and morphological smoothing is 
performed to enhance spatial coherence. This is 
achieved by employing the Adaptive Thresholding 
Module, which dynamically adapts pixel-level 
thresholds based on local intensity histograms and 
gradient data to define lesion boundaries more clearly 
[41]. Lastly, in the Output Generation Module, every 
subtype of hemorrhage receives a distinct color label, 
and the resultant final segmentation is superimposed 
on the original CT image for simple visual 
interpretation, differentiating between epidural, 
subdural, intraparenchymal, intraventricular, and 
subarachnoid hemorrhages. Table 6 analyzes the error 
subtypes. 
 
IV. Results    

The RSNA Intracranial Hemorrhage Detection dataset 
consists of labelled brain CT slices used to determine 
the presence and type of intracranial haemorrhage 
(ICH). Each image is annotated with a generic "any" 
haemorrhage label, indicating the presence of at least 
one subtype, along with five binary labels (0 = absence, 
1 = presence) corresponding to specific haemorrhage 
types: intraparenchymal, intraventricular, 
subarachnoid, subdural, and epidural. The dataset is 
highly imbalanced, reflecting real-world clinical 
distributions, with the majority of slices labelled as 
negative. For instance, only 116 out of more than 
25,000 images show epidural haemorrhage, while 
intraparenchymal and subdural types are more 
common, with 1,581 and 1,236 positive samples, 
respectively. The "any" category includes 3,618 
positive cases. This imbalance poses challenges for 
model training and evaluation, necessitating the use of 
appropriate performance metrics. The precision, recall, 
and F1-score are calculated using standard definitions 
as shown in Eq. (3) to (5), where TP, TN, FP, and FN 
represent true positives, true negatives, false positives, 
and false negatives, respectively. The dataset was split 
into 70% training, 15% validation, and 15% testing. 
Data augmentation included random flipping, rotations 
(±15°), and intensity jitter. To avoid bias, all splits were 
performed at the patient level, preventing data leakage. 
These details ensure reproducibility.  
Fig. 3 illustrates the distribution of individual 
hemorrhage subtypes in the RSNA dataset, showing a 
significant imbalance with very few positive cases, 
especially for epidural hemorrhage. Fig. 4 presents the 
overall label distribution, highlighting that non-
hemorrhagic slices (label 0) dominate the dataset, 
comprising over 94% of the samples, while 
hemorrhagic slices (label 1) account for a small 
minority. This imbalance underscores the challenge in 
training models to detect rare hemorrhage events. 
 

 
Fig. 3. Distribution of Hemorrhage Labels in RSNA 
Dataset 
 

  

Fig. 4. Overall Hemorrhage Distribution 
 
5. Discussion 
The findings of this study demonstrate that the 
proposed MM-GAT-CF model effectively integrates 
multimodal information through a combination of graph 
attention mechanisms, transformer encoders, and 
contrastive fusion. Each component contributes 
uniquely to the overall performance improvement 
observed in the segmentation of brain tumors. The 
graph attention module enhances spatial-contextual 
reasoning by explicitly modeling the relationships 
among tumor subregions, thereby capturing irregular 
and heterogeneous boundaries that are often 
challenging for traditional convolutional models. The 
contrastive fusion mechanism further refines 
multimodal alignment, reducing inter-modality 
redundancy while preserving complementary 
diagnostic features across MRI sequences (T1, T1ce, 
T2, and FLAIR). These synergies result in higher Dice 
similarity coefficients and lower Hausdorff distances, 
indicating that MM-GAT-CF produces more accurate 
and topologically consistent segmentation outcomes. 
This improvement is particularly evident in complex 
tumor regions where boundaries are indistinct, 
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suggesting that explicit graph-based relational 
reasoning enhances spatial coherence in multimodal 
medical imaging. Compared to prior transformer-based 
architectures such as TransBTS and Swin-UNet 
features [37,38]. MM-GAT-CF consistently 
demonstrates superior performance across benchmark 
datasets, as presented in Table 5. TransBTS employs 
transformers primarily within the bottleneck stage to 
capture sequence-level dependencies, whereas Swin-
UNet leverages hierarchical vision transformers for 
patch-based feature extraction. However, both 
methods lack explicit relational reasoning and 
multimodal contrastive alignment, limiting their ability to 
manage boundary ambiguity and cross-modality 
inconsistencies. The current results align with recent 
studies emphasizing that graph neural networks 
(GNNs) can capture non-Euclidean spatial 
relationships more effectively than purely convolutional 
or transformer-based methods. 
 
Table 7. Proposed model comparison with state-of-
the-art methods 

Model/ 
Architecture 

Task  
Focus 

Key 
Features 

Dice 
Score 

3D CNN + 
LSTM 
features [23]. 

Classification 
& Subtyping 

Combines 
spatial (3D 
CNN) and 
temporal 
(LSTM) 
context 

0.81 

3D CNN + 
RNN 
features [25]. 

Classification 
& Subtyping 

Integrates 
sequential 
modeling for 
CT volume 
analysis 

0.80 

Optimized 
3D CNN 
features [29]. 

Lesion 
Detection & 
Volume 
Estimation 

Task-specific 
architecture 
tuning 

0.82 

Basic CNN 
features [33]. 

Segmentation 

Simple 
2D/3D 
convolutional 
layers 

0.78 

Proposed 
Model 

Segmentation 

Fully 3D 
architecture, 
no temporal 
modeling 

0.81 

 
Similarly, comparative literature in other domains 
reinforces this trend. For example, in intracerebral 
hemorrhage segmentation, incorporating 3D spatial 
modeling substantially enhances volumetric 
consistency. MM-GAT-CF builds upon these 
advancements by fusing both spatial reasoning and 
multimodal contrastive learning, leading to robust and 
generalizable tumor delineation performance. 
Collectively, these comparisons highlight that progress 

in segmentation accuracy arises not only from deeper 
networks, but also from architectures that integrate 
contextual reasoning, feature alignment, and modality-
specific representations within a unified framework. 
The implications of these findings extend beyond 
performance metrics. Table 7 compares proposed 
model with state of art methods. 

The proposed MM-GAT-CF framework offers a 
pathway toward more clinically reliable and 
interpretable segmentation systems. Improved 
delineation of small, heterogeneous tumor regions can 
enhance diagnostic precision, assist radiologists in pre-
surgical planning, and facilitate longitudinal treatment 
monitoring. Moreover, the demonstrated effectiveness 
of contrastive multimodal fusion suggests a broader 
potential application for aligning heterogeneous 
medical data sources, an emerging need in radiomics 
and precision oncology.  The model’s adaptability could 
also benefit other multimodal imaging domains, such 
as prostate cancer detection or cardiac MRI 
segmentation, where spatial continuity and modality 
interaction are equally critical. Furthermore, the study 
contributes to the growing body of evidence supporting 
the synergy of graph transformers as a foundation for 
next-generation multimodal networks. This hybrid 
paradigm can improve not only accuracy but also 
model interpretability by enabling more explicit 
visualization of inter-region dependencies and attention 
patterns. Despite its strengths, the MM-GAT-CF model 
presents several limitations. First, integrating graph 
attention with transformer encoders increases 
computational complexity, leading to longer training 
times and higher GPU memory consumption, which 
may hinder deployment in resource-limited clinical 
environments [39, 40]. Second, the model assumes the 
availability of complete multimodal MRI inputs; missing 
or corrupted modalities can degrade segmentation 
performance. Future work should explore modality-
agnostic learning frameworks, self-supervised 
pretraining, or data imputation strategies to address 
incomplete imaging scenarios. Third, the current 
evaluation was primarily conducted on the BraTS 
benchmark datasets, which, although standardized, do 
not capture the full variability of real-world clinical data. 
External validation across multiple institutions, 
scanners, and patient populations is necessary to 
confirm model generalization features [41, 42]. 
Additionally, the interpretability of the fused graph-
transformer representations remains limited. Future 
research should incorporate explainable AI (XAI) 
techniques, such as attention heatmaps, graph 
saliency visualization, or uncertainty estimation, to 
improve clinical trust and transparency. 
 
V. Conclusion 
This study tackles the critical challenge of accurately 
segmenting intracranial hemorrhages (ICH) from brain 
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CT scans, a task complicated by poor boundary 
localization, severe class imbalance, and low contrast 
between hemorrhagic and normal tissues. 
Conventional thresholding techniques and deep 
learning models, such as U-Net and DeepLabV3+, 
often fail to detect small or overlapping bleeds and are 
prone to false positives near bone structures due to 
intensity similarities. To address these shortcomings, 
the proposed approach introduces a 2.5D U-Net 
architecture integrated with an adaptive thresholding 
module that dynamically responds to local intensity 
variations and edge transitions, thereby improving 
pixel-level accuracy in segmenting five ICH subtypes. 
The framework further incorporates preprocessing 
steps such as skull stripping and contrast enhancement 
to improve input quality, followed by post processing 
techniques for refining segmentation outputs and 
assigning subtype labels, resulting in a more robust and 
clinically reliable solution. Experimental findings on the 
RSNA dataset demonstrate enhanced performance, 
with the proposed method achieving a Dice score of 
0.83 and outperforming baseline models in terms of 
accuracy, precision, and recall. This confirms the 
clinical value of the technique in emergency 
neuroimaging pipelines. As future research, the model 
will be expanded with transformer-based attention 
mechanisms and tested on multi-institutional datasets 
to enhance broader generalizability. 
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