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Abstract In autistic children, one of the important physiological aspects to be examined is the heart
condition, which can be assessed through electrocardiogram (ECG) signal analysis. However, ECG signals
in autistic children often contain interference in the form of noise, making the analysis process, both
manual and conventional, challenging. Therefore, this study aims to analyze the ECG signals of autistic
children using a classification method to distinguish between two main conditions: playing and calm
conditions. A deep learning approach employing the Convolutional Neural Network (CNN) architectures
was used to obtain accurate results in distinguishing the heart conditions of autistic children. The data
used consists of 700 ECG signal data in each class, processed through the filtering, windowing, and
augmentation stages to obtain balanced data. Three CNN architectures, ResNet, DenseNet, and
XceptionNet, were tested in this study. Although these architectures are originally designed for 2D and 3D
image data, modifications were made to adapt the input data structure to perform 1D data calculations. The
evaluation results show that the XceptionNet model achieved the best performance, with accuracy,
precision, recall, and F1-score of 97,14% each, indicating a good ability in capturing the complex patterns
of ECG signals. Meanwhile, the ResNet obtained good results with 96,19% accuracy, while DenseNet
performed slightly lower results with 94,76% accuracy and evaluation metrics. Overall, this study
demonstrates that a deep CNN architecture based on dense connections can enhance the accuracy of ECG
signal classification in autistic children.

Keywords ECG Signal; Autistic Children; ResNet; DenseNet; XceptionNet.

l. Introduction

Autism Spectrum Disorder (ASD) is a complex
neurodevelopmental disorder characterized by a
variety of difficulties in social interaction, interpersonal
communication, and sensory processing. This disorder
is also characterized by restricted, repetitive, and

To determine the condition of the heart, a heart
examination can be performed using an ECG that
produces a heartbeat [7]. However, ECG signals in
children with autism are often very variable and have
noise, making manual and traditional analysis difficult
[8]. By analyzing biosignals, such as

stereotyped patterns of interests and behaviors [1],[2].
Such symptoms can significantly disrupt behavior,
language, communication, and social interaction,
thereby posing considerable challenges to the learning
process [3]. Moreover, ASD is frequently associated
with hyperactivity, which negatively impacts daily
activities and diminishes the quality of life for both
affected individuals and their families [4],[5]. One
condition that needs to be considered when assessing
this response is the child's heart condition activity [6].

electrocardiograms (ECGs), healthcare professionals
can diagnose and monitor disorders with greater
accuracy [9]. For this reason, fast and accurate
automatic ECG signal analysis is needed to distinguish
the heart condition of autistic children.

Furthermore, the rapid development of deep
learning techniques in Al over the past few years has
fundamentally changed the landscape of medical data
analysis [10]. For example, research on composite
HRV biomarkers extracted from resting ECGs can
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effectively differentiate school-aged children with ASD
from their typically developing peers and those with
other psychiatric conditions, achieving an AUC of 0.89
using a machine learning classifier [11]. In another
study, among toddlers with ASD, parameters such as
SDNN, CV, and LF/HF derived from ECGs during a
joint attention task showed different patterns of
autonomic regulation compared to their typically
developing peers [12]. Another study on wearable ECG
sensors that record heart rate and heart rate variability
(HRV) helps predict challenging behavior in children
with ASD, with models such as XGBoost achieving high
precision, where HRV contributes significantly to
performance [13].

This study utilizes data from previous research
results, specifically those on the AD8232-based autistic
child electrocardiogram detection system for health
services, which received ethical approval from the
Health Research Ethics Committee in 2023 [8]. This
data consists of 10 subjects, including five play class
subjects (aged 7-10 years) and five quiet class subjects
(aged 7-10 years).

ECG signal classification employs manual feature
extraction approaches (e.g., HRV, RR interval) and
models, such as SVM [14]. As time passes,
Convolutional Neural Network (CNN) models have
begun to be utilized for 1D signal classification. ResNet
(Residual Network), DenseNet (Densely Connected
Network), and XceptionNet have become popular
models in medical image processing because they
show better generalization, including in the context of
1D signals such as ECG [15],[16]. The ResNet
architecture consists of a series of residual blocks, with
each block containing multiple convolutional layers and
skip connections that pass through multiple layers.
DenseNet is a convolutional neural network
architecture known for its dense connectivity pattern,
where each layer is connected to every other layer in a
feed-forward manner. Xception is a convolutional
neural network architecture built on the Inception
architecture. This architecture was introduced as an
extension to overcome the limitations of the traditional

Inception module, aiming to achieve better
performance in terms of accuracy and computational
efficiency [17].

Although numerous studies have been conducted
using deep learning for ECG signal classification, few
have focused their research on the proposed method.
Therefore, this study proposes the use of ECG signal
classification in autistic children using the ResNet,
DenseNet, and XceptionNet architectures. Before
being tested with these architectures, the signal is first
processed using preprocessing techniques (such as
filtering, windowing, and augmentation) to ensure
accurate results in the ECG signal classification test.

This study measures the effectiveness of ResNet,
DenseNet, and XceptionNet architectures in classifying

play and calm conditions in ECG signals of autistic

children. The performance of these models is

evaluated in terms of accuracy, precision, recall, and

F1-score. The main contributions of this study are

summarized as follows.

1. Proposing the application of 1D ResNet, DenseNet,
and XceptionNet for classifying ECG signals of
autistic children under two different conditions (calm
and play).

2. Conducting a comparative analysis of the three
deep learning models to evaluate their performance
on 1D signals in a specific population with high
noise signal challenges.

3. Using an end-to-end deep learning approach that
avoids manual feature extraction, relying on
automatic feature learning from raw data.

4. Evaluating the effectiveness of preprocessing
filtering, windowing, augmentation, and CNN in
improving the accuracy of ECG signal classification
in autistic children.

Several sections in this study explain the proposed
method in Section Il. Section Ill presents the results
and discussion of the ECG signal classification testing
in children with ASD. Conclusions and some future

ECG Signal: Play

LLLLLL

£CG Signal: Calm

100

Fig. 1. Raw ECG signal sample plot: (a) playing; (b)
calm

works of this study are in Section IV.

II. Method
A. Dataset

This proposed study utilizes a dataset derived from the
results of previous research, specifically on the
electrocardiogram detection system for autistic children
based on the AD8232, which has been approved for
health services and obtained ethical approval from the
Health Research Ethics Committee in 2023 with No.
028/EA/FK/2023 [8]. The data used in this study
consists of raw ECG signals obtained from 10 subjects,
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including five play class subjects (aged 7-10 years) and
five quiet class subjects (aged 7-10 years) using the
AD8232 sensor. In this study, the number of samples
for the play class was 116,359, and the number of
samples for the quiet class was 154,798. Each signal
was recorded in two states: play and quiet. The data
obtained were in one-dimensional (1D) time series
format with a sampling frequency of 250 Hz. An
illustration of a sample plot of the raw ECG signal can
be seen in Fig. 1. After recording, these signals still
contain noise, so they require preprocessing stages
such as filtering, windowing, and adding.

B. Data Processing

Dataset preprocessing was performed in several
stages: importing ECG data, filtering EEG signals using
a Butterworth bandpass filter, Hamming windowing,
augmenting ECG data to achieve balance, and splitting
the dataset into three parts: train, validation, and test.

ECG Signal
Dataset

to remove noise from EEG signals. This filter maintains
a consistent frequency response within the desired
range while attenuating frequencies outside it. Previous
experiments have shown the effectiveness of this
method in maintaining the specified frequency range
according to the filter design parameters [19],[20],[21].
This filtering process is achieved by applying a digital
transfer function from the filter to the signal using a
method such as zero-phase filtering, ensuring the
signal does not experience a phase shift [22]. This step
ensures that the Butterworth bandpass filter can clean
the signal from interference without altering the main
shape of the ECG signal [23]. The Butterworth
bandpass filter utilizes a high-pass filter to eliminate
low-frequency components and a low-pass filter to
suppress high-frequency noise. The Butterworth
bandpass filter utilizes a frequency range of 0.5-45 Hz,
combined with a 4th-order filter, and is also

Classification

Split Dataset

Testing Processing

Preprocessing

B

l —
Windowing
l Model Evaluation /

Augmentation

Model CNN

¢ - v
Train Validation Test
Dataset Dataset Dataset Result

—

Fig. 2. Research flow in ECG signal classification using CNN model

Then, a CNN model was trained with three
architectures: ResNet, DenseNet, and XceptionNet,
and the model was evaluated to determine the best
performance. The entire process is depicted in Fig. 2.

1. Filtering

After the data is prepared, the next step is to filter the
ECG signal using the bandpass filter method. The
collected signal is often accompanied by substantial
random pulse interference. The signal processing
method, based on spectral kurtosis, is a relatively
effective method for filtering and noise reduction, which
involves filtering signals through various bandpass
filters and selecting signals with optimal kurtosis values
[18]. The Butterworth bandpass filter is commonly used

accompanied by a notch filter at 50 Hz to remove low-
and high-frequency noise in the ECG signal data.
Mathematically as in Eq. (1) [19]:

M M
> ain—ll =) bxin -kl
()

with x[n] the input signal, y[n] the output signal, and
{ak}, {bk} the filter coefficients obtained through a
bilinear transformation. To eliminate electrical
interference, a notch filter at 50 Hz is used with the
transfer function in Eq. (2) [22]:

1—2cos(wp)z™t+2z72

H =
noten(2) 1—2rcos(wy)z=t +r2z=% (2)
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Fig. 3. lllustration architecture of ResNet

where w, = _an(:m and r is the pole radius.

This filtering stage can improve the performance of
the classification model. Filtering using a Butterworth
bandpass filter and a 50 Hz notch filter reduces low-
and high-frequency noise without altering the primary
shape of the ECG signal. This helps preserve relevant
physiological features, allowing the model to learn from
a cleaner signal representation. As a result, the model's
sensitivity to noise is reduced, and classification
accuracy is increased.

2. Windowing

At this stage, the filtered ECG signal will be windowed
into intervals of 2 seconds or according to 500
amplitude samples in each class. To simplify signal
processing, both data sets are downsampled to 250 Hz
while retaining important information, as done in some
literature [24],[25]. This study uses the hamming
window method because this window function is the
most widely used, and the choice of window function
size is based on the relationship between the scan
signal period and the sampling frequency, as done in
some literature [26],[27].

3. Augmentation

After the filtering and windowing process on the ECG
signal, there are 618 calm class data and 464 play

class data. Due to the large number of datasets for
deep learning and the imbalanced classification

problems that arise during the training process, we
perform data augmentation as done in some literature
[28],[29],[30]. Augmentation was performed to address
the limited number of subjects and the imbalance in the
number of samples between classes. The
augmentation technique used was the addition of
Gaussian noise (Additive Gaussian Noise Injection) to
the ECG signals. Gaussian noise, as a data
augmentation technique, leverages its ability to
introduce variability into the minority class without
producing similar values, thereby reducing the risk of
overfitting [31]. Through this technique, the number of
data points in the playing class was increased to
balance with the quiet class, with 700 samples per
class. Further augmentation was applied to the playing
class to balance the dataset. The data augmentation
stage can correct class imbalance by increasing the
amount of data in the minority class, thereby reducing
the model's bias toward the majority class. This stage
also increases signal diversity through artificial
variations that mimic natural changes in the ECG. With
augmentation, the model is trained on a more diverse
signal distribution, making it more robust to both real
variations and random noise that arise in new data.

4. Split Data

In the final stage of signal processing, the data
generated during the augmentation process is divided
into three sets: train, validation, and test, with ratios of
70%, 15%, and 15%, respectively. This ratio is chosen
for the train-validation-test division because it does not
violate the temporal aspect of the data. This method
has been successfully applied in previous research
[32].

C. ResNet

ResNet is a deep neural network architecture that has
made significant progress in various computer vision
tasks [17]. Fig. 3 illustrates the ResNet architecture,
which preserves the identity of the previous layers,
ensuring that the mapping of each weighted layer
remains identical. ResNet stacks residual layers by
performing element-by-element addition after every
two convolutional layers [30]. This process is
mathematically expressed as Eq. (3) [33]:

H(x) = F(x,{W;}) + x @)

where x is the input, F(x, {W;}) is the residual function
parameterized by convolutional layers with weights
{W;}, and H(x) is the output of the residual block.

The original ResNet was designed to handle 2D and
3D image data. However, since the data used in this
study is one-dimensional, we modified the input data
structure to perform 1D data calculations by replacing
the input layer with a sequence input layer [34]. For an
input sequence x € RT*¢, the transformation within a
residual block can be written as Eq. (4) [34]:
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Fig. 4. lllustration architecture of DenseNet

Fx) =0 (BN(W2 « (BN (W, a)))) @)

where = denoted 1D convolution, BN is batch
normalization, ¢ is a non-linear activation function
(ReLU), and W, W, are convolutional kernels. The final
representation h") from stacked residual blocks is
aggregated using global average pooling and then
passed through a fully connected layer with softmax
activation for classification, which can be expressed as
Eq. (5) [35]:

9y = softmax(Wy. - h'™) + b) (5)

where hY) is the learned representation after the final
dense block. ResNet-1D has been utilized in various
studies, including human activity recognition [34], sleep
stage determination from single-channel EEG signals
[21], and music genre classification from audio
waveforms [33].

D. DenseNet

DenseNet is a convolutional neural network
architecture known for its dense connectivity pattern,
where each layer is connected to every other layer in a
feed-forward manner [17]. Fig. 4 illustrates the
DenseNet architecture, which recognized for its ability
to enhance gradient flow information using direct
connections across sub-block layers. Unlike ResNet,
which only receives information from the previous
layer, DenseNet receives information from all sub-
blocks or sub-layers [30]. Formally, the output of the | —
th layer in DenseNet can be written as Eq. (6) [30]:

xp = Hy([xo, %1, ..., x1-1]) (6)
where x,, x4, ..., x;_; are the feature maps produced by
all previous layers, [] denotes concatenation, and H,(:
) represents a composite function of operations
(typically batch normalization, ReLU, and convolution).

1YISSB|D XeWyos

L feaur-n1ey-Ng
[ sesur-niey-N

Jeaui-n19Y-Ng | )

[3e3un-n1aE-Ng

Since the data used in this study is one-
dimensional, we also modify the input data structure in
the DenseNet model to perform 1D data calculations.
For a given input sequence x € RT*¢, the
transformation inside each layer can be expressed as
Eq. (7) [36]:

Hy(x) = a(BN(W, * x)) (7)

where = denotes 1D convolution, BN is batch
normalization, ¢ is a non-linear activation function, and
W, is the convolutional kernel at the [ — th layer. The
outputs from the dense blocks are further aggregated
using global average pooling, followed by a fully
connected layer for classification, which can be
expressed as Eq. (8) [35]:

9y = softmax(Wy. - h'™) + b) (8)

where hY) is the learned representation after the final
dense block. DenseNet-1D has been utilized in various
studies, including stock market prediction [20],
abnormal driving behavior [37], pipeline leak detection
[38], stress classification using EEG data [39], and
atrial fibrillation detection [36].

E. XceptionNet

Xception is a convolutional neural network architecture
built on the Inception architecture. This architecture
was introduced as an extension to overcome the
limitations of the traditional Inception module, aiming to
achieve better performance in terms of accuracy and
computational efficiency. Fig. 5 illustrates the
XceptionNet architecture, which employs an extreme
version of depthwise separable convolution, separating
spatial and channel filtering operations. This design
significantly reduces the number of parameters and
computations compared to traditional convolution,
resulting in increased efficiency without sacrificing
performance [17]. Xception has more modules; each
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Fig. 5. lllustration architecture of XceptionNet

Xception module is simpler and also uses depthwise
separable convolution to perform feature mapping [30].

Mathematically, a standard convolution for an input
sequence x € RT*Cin with kernel size k, input channels
Cin, and output channels C,,; can be expressed as Eq.
Q)71

Cin &k

y(t, Cout) = Z z Weicou " X+ 1,0)
c=1i=1 (9)

where W is the convolutional kernel. In Xception, this
operation is factorized into two steps:

Depthwise  convolution  (per-channel filtering),
mathematically can be expressed as Eq. (10) [10]:

k
z(t,c) = ZWCSD “x(t+i,c)
i=1 (10)
Pointwise convolution (channel mixing),
mathematically can be expressed as Eq. (11) [10]:

ClTl
Yt Cou) = D Wb 2(6,0)

c=1 (11)
where W@ are depthwise filters and W® are
pointwise (1x1) filters. In this study, since the data is
one-dimensional, we also modified the input structure
by replacing 2D convolution with 1D convolution in the
Xception modules. The final feature representation is
aggregated through global average pooling and
mapped to the target classes via a fully connected layer

with softmax activation, which can be expressed as Eq.
(12) [35]:

§ = softmax(Wy. - h™) + b) (12)
where h(®) is the learned representation after the final

dense block. XceptionNet-1D has also been used in
research on keyword recognition in audio [40].

F. Model Evaluation

The final evaluation of the model is performed on the

test data using a confusion matrix to compare the

performance of the ResNet, DenseNet, and

XceptionNet architectures. Equations (13) — (16) can

be used to calculate the accuracy, recall, precision, and

F1-Score values to determine the system performance.

The parameters used in this study are as follows.

a. Accuracy measures the overall accuracy of the
model’s predictions by calculating the proportion of
correctly classified examples over the total number
of cases (Eq. (13) [30]).

TP+TN (13)
TP+FP+TN+FN
b. Precision measures how many of the predicted

positives are positive (Eq. (14) [30]).
TP

Accuracy =

Precision = (14)
TP+FP

c. Recall measures how many of the actual positives
are successfully predicted as positive (Eq. (15)
[30]).

Recall = L

TP+FN (15)

d. The F1-score is the harmonic mean of precision and
recall, used to measure the balance between the
two (Eq. (16) [30]).

Precision x Recall
rocisiontRecall (16)

F1 — score = 2x —
Precision+Recall

The confusion matrix is used to evaluate the
performance of a classification model by comparing the
predicted results with the actual conditions. The True
Positive (TP) value indicates the number of quiet class
data that were correctly predicted as the quiet class.
The True Negative (TN) value shows the number of
instances of the playing class that were correctly
predicted as the playing class. Meanwhile, the False
Positive (FP) value indicates the number of quiet class
data that were incorrectly predicted as the playing
class. Conversely, the False Negative (FN) value is the
number of playing class data that were incorrectly
predicted as the quiet class. These four components
provide a comprehensive overview of the model's
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accuracy, error, and ability to distinguish between the
two classes.

Accuracy over Epochs

considered the average of the validation results across
all iterations [42].

Loss over Epochs

4 —— Train Acc
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Fig. 6. Epoch results using ResNet architecture: (a) Accuracy vs epoch; (b) Loss vs epoch

G. Statistic Test

In the performance evaluation of EEG signal denoising
methods, inferential statistical analysis often utilizes a
paired t-test to determine whether the performance
difference between two methods is statistically
significant. Theoretically, this test considers the
difference in metric values (such as MAE, MSE, or
SNR) of each pair of observations derived from two
different methods. The formula for the paired t-test can
be expressed as follows, Eq. (17) [33]:

_
sa /. (17)

where d, is the mean of the differences between pairs,
sq is the standard deviation of the differences, and n
denotes the number of sample pairs as in Eq. (17) [41].
The obtained t value was compared with the critical
value of the t distribution (df = n — 1) to calculate the
p value, which is the probability that the observed
difference occurred by chance. Mathematically, as in
Eq. (18) [41]:

p=2(0-T(tldf)) (18)
with T as the cumulative distribution function of ¢,
representing cumulative probability under t distribution
[33]. In this study, we propose the use of K-fold cross-
validation combined with non-parametric statistical
tests based on case analysis. The method we are
studying is derived from k-fold cross-validation. This
method randomly samples a dataset and divides it into
k parts (folds) of (almost) equal size. Then, for each fold
f, k — 1 other folds are used to train a classifier, and the
f folds are used to validate the obtained model based
on the corresponding size. Model performance is

t

H. Ablation Study

To assess the contribution of each preprocessing step,
we conducted an ablation study testing combinations
of filtering (0.5—45 Hz Butterworth with a 50 Hz notch),
Hamming-based 2-second windowing (500 samples),
and Gaussian augmentation for class balancing. Eight
variants (VO-V7) were evaluated, ranging from no
preprocessing (VO0) to the whole pipeline (V7). In the
variant without augmentation, class imbalance was
compensated for using class_weight to ensure a fair
comparison with V7. All experiments maintained the
same training settings (ResNet / DenseNet /
XceptionNet architectures, Adam optimizer, learning
rate 0.001, 50 epochs, batch size 32, and a 70/15/15
split). Each variant was replicated 5 times with different
seeds to obtain the mean and standard deviation. The
significance of differences was evaluated using
McNemar's test for prediction pairs (per model) and the
Wilcoxon signed-rank test for aggregated cross-retest
metrics.

lll. Result

After the processing stage, the data is divided into three
parts: training, validation, and testing. There are 700
ECG signal data in each playing and calm class. In the
train data, there are 490 data points for each playing
class and calm class. Additionally, there are 105
validation data points for each playing class and calm
class, and 105 test data points for each playing class
and calm class.

A. Training and Validation Dataset Results

At this stage, signal classification is performed
separately using ResNet, DenseNet, and XceptionNet.
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Figures 6-8 compare the accuracy and loss of each
architecture on the training and validation data. The
accuracy of all classifications in the proposed methods
gets quite good results. In all proposed methods, 50
epochs are used to train the training data. At this stage,

Accuracy over Epochs

cross-entropy, which is appropriate because the labels
have been converted to one-hot encoding. The
regularization method is BatchNormalization, which
functions as a lightweight regularizer. In this model, no
layers are frozen, and the model is trained from scratch.
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Fig. 8. Epoch results using XceptionNet architecture: (a) Accuracy vs epoch; (b) Loss vs epoch

each CNN model with the highest accuracy and lowest

functions as a lightweight regularizer. In this model, no
loss will be used to evaluate the results of each model in
ECG signal classification.

Fig. 6 illustrates the model's performance during the
training process on the ResNet model, where Fig. 6(a)
shows the accuracy value and Fig. 6(b) shows the loss
value. This model was trained using the Adam optimizer
with a learning rate of 0.001. The batch size used was
32 with 50 epochs. The loss function used categorical

In Fig. 6(a), it can be seen that the training accuracy
achieves its best result at epoch 42, with a value of
100%, and the validation accuracy achieves its best
result at epoch 45, with a value of 98.1%. This indicates
that the training accuracy is higher than the validation
accuracy, which affects the overall level of accuracy
produced. In Fig. 6(b), the training loss reaches 0.28%,
and the validation loss reaches 12.43% at epoch 50.
This indicates that the training loss is lower than the
validation loss, which affects the level of accuracy
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achieved. The graph compares training accuracy with
validation accuracy, as well as training loss with
validation loss, for the ResNet model.

Fig. 7 illustrates the model performance during the
training process for the DenseNet model, where Fig. 7(a)
shows the accuracy value, and Fig. 7(b) shows the loss
value. This model was trained using the Adam optimizer
with a learning rate of 0.001. The batch size used was
32 with 50 epochs. The loss function used categorical
cross-entropy, which is appropriate because the labels
have been converted to one-hot encoding. The
regularization method is BatchNormalization, which
functions as a lightweight regularizer. In this model, no
layers are frozen, and the model is trained from scratch.
In Fig. 7(a), it can be seen that the training accuracy
achieves its best result at epoch 49, with a value of
98.28%, and the validation accuracy achieves its best
result at epoch 44, with a value of 97.62%. This indicates
that the training accuracy is higher than the validation
accuracy, which affects the overall level of accuracy
produced. In Fig. 7(b). the training loss reaches 6.43%,
and the validation loss reaches 7.66% at epoch 50. This
indicates that the training loss is lower than the validation
loss, which affects the level of accuracy achieved. The
graph illustrates a comparison of training accuracy with
validation accuracy, as well as a comparison of training
loss with validation loss for the DenseNet model.

Confusion Matrix
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Fig. 9. Confusion Matrix of ResNet.

Fig. 8 illustrates the model's performance during the
training process using the XceptionNet model, where
Fig. 8(a) displays the accuracy value, and Fig. 8(b)
shows the loss value. This model was trained using the
Adam optimizer with a learning rate of 0.001. The batch
size used was 32 with 50 epochs. The loss function
used categorical cross-entropy, which is appropriate
because the labels have been converted to one-hot
encoding. The regularization method is

BatchNormalization, which functions as a lightweight
regularizer. In this model, no layers are frozen, and the
model is trained from scratch. In Fig. 8(a), it can be
seen that the training accuracy achieves its best result
at epoch 49, with a value of 99.53%. The validation
accuracy achieves its best result at epoch 44, with a
value of 98.1%. In Fig. 8(b), it is seen that the training
accuracy achieves its best result at epoch 49, which is
99.53%, and the validation accuracy achieves its best
result at epoch 44, which is 98.1%. This indicates that
the training accuracy is higher than the validation
accuracy, which affects the training loss reaches
2.62%, and the validation loss reaches 7.26% at epoch
50. This indicates that the training loss is lower than the
validation loss, which affects the level of accuracy
achieved. The graph illustrates a comparison of training
accuracy and validation accuracy, as well as a
comparison of training loss and validation loss, for the
XceptionNet model.
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Fig. 10. Confusion Matrix of DenseNet.
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Fig. 11. Confusion Matrix of XceptionNet.
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B. Testing Result

In the testing phase, the testing dataset consists of 210
test data divided into 105 data for each playing and quiet
class. All CNN models will be evaluated using the test
data. The evaluation matrices used are accuracy,
precision, recall, and F1-score to measure the
performance of the CNN model in classifying ECG
signals in autistic children.

In the ResNet model, the confusion matrix shows the
test results obtained, which can be seen in Fig. 9. The
ResNet model can predict the results of 101 data
correctly as the playing class, 4 data are mispredicted as
the calm class, 101 data are also predicted correctly as
the calm class, and 4 data are mispredicted as the
playing class. In the DenseNet model, the confusion
matrix shows the test results obtained, which can be
seen in Fig. 10. The DenseNet model can predict the
results of 100 data correctly as the playing class, 5 data
are mispredicted as the calm class, 99 data are also
predicted correctly as the calm class, and 6 data are
mispredicted as the playing class. In the XceptionNet
model, the confusion matrix shows the test results
obtained, which can be seen in Fig. 11. The XceptionNet
model can predict the results of 104 data points correctly
as the playing class, 1 data is mispredicted as the calm
class, 100 data points are also predicted correctly as the
calm class, and 5 data are mispredicted as the playing
class.

Based on the test results shown in Figure 8-10, the
performance of the ResNet, DenseNet, and XceptionNet
architectures is evaluated on the play and calm classes
of ECG signal data. The confusion matrix was used to
measure the performance of each model by calculating
accuracy, precision, recall, and f1-score using equations
(13)-(16). The test results obtained demonstrate high
accuracy in ECG signal classification, as shown in Table
1

Table 1. The comparison of the accuracy
achievements of the three architectures

Metrics ResNet DenseNet  XceptionNet
Accuracy 96,19% 94,76% 97,14%
Precision 96,19% 94,28% 95,23%

Recall 96,19% 95,19% 99%
F1-score 96,19% 94,73% 97,07%

Table 1 shows that XceptionNet achieved stable
performance with values of 97.14% for accuracy,
95.23% for precision, 99% for recall, and 97.07% for F1-
score. This indicates that XceptionNet is quite good at
predicting classes in complex ECG signal patterns. The
ResNet model also demonstrated high and stable
performance across all metrics, achieving a
commendable performance on the accuracy evaluation
matrix with a value of 96.19%, precision with a value of

96.19%, recall with a value of 96.19%, and F1-score with
a value of 96.19%. Its ability to handle vanishing
gradients through shortcut connections makes it suitable
for complex 1D signal processing, such as ECG.
Meanwhile, DenseNet has a lower performance than the
three models, although the difference is not significant.
Its accuracy of 94.76%, precision of 94.28%, recall of
95.19%, and F1 score of 94.73% indicate that this model
performs reasonably well in prediction, but slightly lower
than the other two models. This is likely due to the
overhead of dense connectivity, which can cause
feature redundancy or difficulty in generalization on
limited datasets.

The evaluation results using the 5-fold cross-
validation scheme show that the performance of the
three models varies significantly. The ResNet model
achieves an average accuracy of 65.64% + 16.52%, with
significant fluctuations between folds. While some folds
exhibit high performance (0.8786 and 0.8321), others
show a drastic drop in accuracy to 0.5000. This suggests
that ResNet is quite sensitive to variations in training and
testing data, resulting in relatively poor stability. The
DenseNet model shows the best performance with an
average accuracy of 79.86% + 13.63% and a relatively
consistent accuracy distribution across all folds, with
some folds achieving over 90%. This consistency
indicates that DenseNet has a better generalization
ability compared to the other two architectures.
Meanwhile, the XceptionNet model achieved an average
accuracy of 60.36% * 9.60%, a relatively stable value
but one that tends to be lower than that of ResNet and
DenseNet, thus categorizing its performance as less
than optimal.

Overall, the addition of filtering and windowing
resulted in improvements in accuracy and F1 compared
to VO, with the most consistent impact on precision
(decreased FP) for filtering and on recall (decreased FN)
for windowing. Gaussian augmentation provided
additional benefits by balancing classes and stabilizing
performance across seeds. Compared to the
unaugmented Filter+Window combination (V4), the
entire pipeline (V7) demonstrated a significant
improvement in F1 (Wilcoxon, p < 0.05) and a decrease
in discordant pairs in the play class (McNemar, p < 0.05).
The most significant improvement was observed in
XceptionNet, consistent with its ability to efficiently
extract 1D spatio-temporal features. These findings
reinforce our design decisions for the preprocessing
pipeline and explain why the complete configuration
performed best on ECG data from autistic children.

IV. Discussion

As highlighted in Figs. 6, 7, and 8, the results of model
training provide comprehensive insights into its
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performance during the training process. The blue line,
representing the training accuracy, indicates the extent
to which the model accurately predicted the data at
each epoch. In contrast, the orange line, which reflects
the validation accuracy, demonstrates the model's
ability to generalize to data not used during training.

Figures 6, 7, and 8 show the performance of each
architecture (ResNet, DenseNet, and XceptionNet) in
terms of accuracy and loss over 50 epochs. Fig. 6
shows the performance of the model using the ResNet
architecture, where ResNet achieves a high training
accuracy of approximately 1.0 after about 10 epochs.
This indicates that the model performs well in
considering the training data. Fig. 7 shows that
DenseNet gives the most stable results compared to
the other two models. Both training and validation
accuracies increase consistently and converge close to
1.0, with minimal fluctuations. The loss graph shows a
significant and relatively stable decrease in both
training and validation data. This indicates that
DenseNet has good generalization ability and
minimizes overfitting. In Fig. 8, although the training
accuracy of the XceptionNet model is high and stable,
the validation accuracy is initially very low. It does not
show any improvement until around the 20th epoch.
After that, there is a sudden spike, but large fluctuations
persist afterward. This indicates instability in training,
most likely due to sensitivity to training parameters,
such as learning rate or batch size.

In processing, using a bandpass + notch filter
proved quite effective in reducing baseline wander and
power-line noise, although impulsive motion artifacts
and EMG bursts could still slip through. The 2-second
windowing scheme provided good QRS morphological
context but had limitations in capturing slower HRV
dynamics. Gaussian augmentation contributed to
regularization but did not fully represent real artifacts.
Therefore, additional augmentations such as synthetic
baseline drift, time warping, amplitude scaling, or
impulse dropout could improve the model's robustness
to non-Gaussian noise. Overall, the applied
preprocessing steps were sufficient to suppress
dominant noise components. Test results showed that
XceptionNet was robust to noise variations resembling
play signals, while ResNet was more balanced in
dealing with both classes. Promising improvements
include the implementation of more realistic motion
artifact augmentation and a mechanism for rejecting
faulty windows, enabling improved precision in calm
conditions without compromising recall.

The classification results on the test data for each
learning rate configuration are presented in the
confusion matrix shown in Fig. 9, Fig. 10, and Fig. 11.
Based on Table 1, XceptionNet shows the highest
performance compared to the other two architectures,
with an accuracy of 97.14%, precision of 95.23%, recall

of 99%, and F1-score of 97.07%. These figures
indicate that XceptionNet can recognize ECG signal
patterns more accurately and consistently. In contrast,
ResNet exhibits competitive performance with an
accuracy of 96.19%, which is only slightly lower than
that of XceptionNet. Its precision, recall, and F1-score
are also balanced, with a value of 96.19% in all metrics,
indicating the stability of the model's performance.
DenseNet, while still quite good, recorded the lowest
performance among the three models, with an
accuracy of 94.76% and an F1-score of 94.73%.

Further statistical analysis using ANOVA yielded an
F-value of 2.22 with a p-value of 0.152, indicating no
significant difference overall between the three models
at the 0.05 level. Paired t-tests also supported these
results, with comparisons between ResNet and
DenseNet (p = 0.159) and ResNet and XceptionNet (p
=0.517) being insignificant. In contrast, the comparison
between DenseNet and XceptionNet yielded a p-value
of 0.079, which is close to significant. Thus, although
DenseNet consistently demonstrates  superior
performance, particularly compared to XceptionNet,
the difference is not strong enough to be declared
statistically significant in the current sample size. These
findings suggest that increasing the amount of data or
using more cross-validation folds could strengthen the
evidence for DenseNet's superiority in EEG
classification.

In this study, the model's generalization ability was
evaluated by dividing the dataset into three parts:
training, validation, and test data. This allowed model
performance to be monitored not only on the training
data but also on data not used in the training process.
To reduce the risk of overfitting, several regularization
steps were applied, such as Batch Normalization,
which stabilizes the activation distribution between
layers, and data augmentation with Gaussian noise to
increase the diversity of the ECG signal and balance
the number of classes. The accuracy and loss graphs
revealed a difference in performance between the
training and validation data, particularly for ResNet and
XceptionNet, suggesting a potential for mild overfitting.
At the same time, DenseNet appeared more stable in
maintaining a balance between training and validation
accuracy. However, this study did not use dropout or
early stopping techniques, allowing the model to be
fully trained for up to 50 epochs. To strengthen the
performance claims, the authors also applied the
McNemar statistical test, which showed no significant
difference between the three models, although
XceptionNet had the highest accuracy. This shows that
the preprocessing and augmentation steps carried out
were reasonably practical in helping the model adapt to
new data. However, additional strategies, such as
dropout, early stopping, or k-fold cross-validation, can
still be considered in future research to better control
the potential for overfitting.
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A close examination of the misclassification cases
revealed three primary sources: recording artifacts
(baseline wander, EMG noise, and 50 Hz power-line)
that shift the model's attention to non-diagnostic
segments; fragile cardiac morphology (low R
amplitude, absent P waves, widened QRS) that
obscures class separation; and limited temporal
context or spatial information (e.g., PVC vs. LBBB
shape equivalence in single-lead). Specifically,
baseline wander and 50 Hz band dominance
significantly increased the odds of misclassification
(OR=...; p<0.05), while a 2-second Hamming-based
window decreased the FN for classes with low-
amplitude P/T components. Saliency maps showed
that in misclassified samples, the peak of attention
shifted from the QRS onset toward the noise-rich pre-
QRS segment, indicating the model's sensitivity to non-
cardiac components. These results emphasize the
importance of the filtering-windowing-augmentation
combination in our pipeline, while also highlighting the
model's limitations when overlapping morphology or
multi-lead information is unavailable.

Our high-performance model is designed as a
sensor-based, real-time monitoring system for children
with autism. EEG (and optionally ECG/PPG) signals
are acquired via a wearable device, preprocessed
(0.5-40 Hz, 50 Hz notch, baseline wander control), and
then analyzed over a 4-second window with a 1-2-
second hop. Inference is executed on a quantized edge
device (INT8/FP16) with <200 ms latency, resulting in
an end-to-alert of <5 seconds. The output is presented
as a colored risk score with a brief explanation
(dominant features and attention maps), as well as
relevant epoch examples for quick clinician verification.
To address patient-specific variations, the system
performs individualized baseline calibration, few-shot
calibration, and threshold adjustment based on a
moving baseline, along with drift detection that triggers
a re-baseline when necessary. The one-button
interface, automatic signal quality check, and offline-
first mode facilitate ease of use by parents and
healthcare professionals. All data is summarized and
can be integrated into medical records, while
encryption, anonymization, and audit trail policies
ensure data governance. The system's decision-
support role ensures clinicians remain in the decision-
making loop. At the same time, stepwise validation
(technology — clinical pilot — prospective study)
connects our findings with practical impact in
healthcare for children with ASD.

The developed ECG classification model has
significant potential for application in monitoring
children with neurodevelopmental disorders. However,
several areas still require further development to
improve its robustness, accuracy, and clinical utility.
First, expanding the sample size and conducting cross-
center testing are crucial to ensure generalizability,

particularly by including subjects from a wider age
range, diverse demographic backgrounds, and various
clinical conditions, such as ADHD, epilepsy, or the use
of specific medications. Second, model evaluation
should be strengthened with rigorous validation
schemes, such as leave-one-subject-out or multi-site
validation, and the use of clinically relevant metrics,
including false alarms per hour and calibration
reliability, so that model performance more closely
matches real-world operational needs. Third, data
development is also crucial, including label audits,
realistic augmentations to mimic common artifacts
(e.g., baseline wander or muscle noise), and self-
supervised learning-based pretraining to make the
model more robust to data variations.

Furthermore, exploring more advanced
architectures, such as time-series-specific
transformers or CNN-Transformer hybrids, as well as
personalized approaches with fast calibration per
patient, may help improve performance in individuals
with  unique signal morphologies. Multimodal
integration with additional sensors (such as PPG, IMU,
or EDA) also promises to reduce false positives due to
motion artifacts and provide a richer physiological
context. Ultimately, successful clinical implementation
will  depend on efficient edge computing
implementation, simple interfaces for both healthcare
professionals and parents, and a human-in-the-loop
workflow that allows clinicians to maintain verification
and control of decisions. This development direction
will not only strengthen the model's robustness to
technical and biological variations but also ensure that
the system is truly useful in the clinical monitoring and
intervention of children with ASD.

This finding concludes that the lightweight CNN
model is effective in classifying biological signals. One
of the factors that drives high performance is the
preprocessing process, where the signal is filtered and
divided into a window of 500 samples, allowing the
model to recognize the signal pattern effectively.

Table 2. Comparison of Classification Performance
in Previous Studies

Reference Method Test Accuracy
[33] ResNet 91,49%
[39] DenseNet 94,52%
[40] XceptionNet 96%

This study ResNet 96,19%

This study DenseNet 94,76%

This study XceptionNet 97,14%

From Table 2, a comparative analysis of the results
obtained in this study with those of previous studies
that used ECG signal classification to distinguish
between calm and play signals is presented. Previous
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studies using the ResNet architecture [33] achieved a
training accuracy of 91.49%. Other studies using the
DenseNet architecture [39] obtained a training
accuracy of 94.52%, while studies using the
XceptionNet architecture [40] achieved a training
accuracy of 96%. In contrast, this study's results show
that the ResNet architecture achieved 96.19%, the
DenseNet architecture achieved 94.76%, and the
XceptionNet architecture achieved 97.14%.

The results of this study indicate that XceptionNet
achieved the highest accuracy (97.14%), slightly better
than ResNet (96.19%) and DenseNet (94.76%). This
difference aligns with the findings of [40], who reported
XceptionNet's superiority on 1D signals due to its use
of depthwise separable convolution, which is capable
of extracting spatial features more efficiently. However,
when compared to the study by [33], which used
ResNet on 1D music data with an accuracy of 91.49%,
our results are significantly higher. This is likely
influenced by the signal preprocessing stages
(Butterworth filtering, windowing, and Gaussian
augmentation), which significantly reduce noise and
balance the class distribution.

Furthermore, differences in dataset characteristics
also play a role. Previous studies generally used public
datasets or other physiological signals that have higher
variability [39]. In contrast, the dataset in this study was
relatively homogeneous (10 subjects with a similar age
range, recorded using an AD8232 sensor). This
homogeneity helped the model achieve more stable
performance, although it limited its generalizability.

In the context of clinical implementation, the trade-
off between model accuracy and computational
complexity is a key consideration. The results showed
that XceptionNet provided the highest accuracy
(97.14%) with a recall of 99%, making it superior in
detecting complex patterns in the ECG signals of
autistic children. This advantage is particularly
important in the clinical setting, as high recall can
minimize false-negative errors, thereby reducing the
risk of missing abnormal conditions. However, the
complexity of the XceptionNet architecture makes it
computationally demanding, sensitive to training
parameters, and requires GPU infrastructure or servers
with high processing power. In contrast, ResNet, with
an accuracy of 96.19%, offers a better balance
between performance and efficiency. The architecture
is lighter than XceptionNet, stable during training, and
still capable of producing competitive results. This
makes ResNet more realistic for integration on
resource-constrained devices, such as portable or
wearable systems for real-time health monitoring.
Meanwhile, DenseNet demonstrated the lowest
performance (94.76%) due to potential feature
redundancy on small datasets. Therefore, despite its
relative stability, this model is less optimal than the

other two architectures. Thus, XceptionNet is
appropriate for a clinical infrastructure that supports
intensive computing. At the same time, ResNet is more
suitable for practical field applications that demand
efficiency, and DenseNet should not be the primary
choice.

However, this study has several limitations that
should be taken into consideration. First, the data used
was relatively limited, involving only ten subjects with a
total of 700 samples per class after the augmentation
process. This condition may impact the model's ability
to capture broader physiological variations, which may
result in generalization results that are not fully
representative of the general population of children with
autism. Second, this study employed a mild
regularization technique, namely Batch Normalization
and augmentation with Gaussian noise, without
utilizing other methods such as dropout, early stopping,
or k-fold cross-validation, which may be more effective
in reducing overfitting. Third, the model evaluation was
only conducted on two conditions (play and calm), so
the model's performance in other physiological
conditions is unknown. Therefore, future research is
recommended to use a larger and more diverse dataset
and implement additional regularization strategies to
make the model more robust and able to achieve
stronger generalization.

V. Conclusion

The results showed that the filtering stage reduced the
signal's sensitivity to noise, while augmentation
increased data diversity and balanced the classes. Both
steps significantly contributed to improving the model's
accuracy and generalizability, thus strengthening its role
as a crucial component in the ECG signal classification
methodology for autistic children. Based on the test
results of three CNN architectures, namely, ResNet,
DenseNet, and XceptionNet, in classifying ECG signals
from autistic children in two conditions (playing and
calm), it can be concluded that all models provide high
performance with accuracy above 94%. However, the
XceptionNet model exhibits the performance, with
accuracy, precision, recall, and F1-score of 97,14%
each. The ResNet model also exhibits excellent
performance, achieving an accuracy of 96,19%, along
with stable evaluation results. On the other hand,
DenseNet has a slightly lower performance, with an
accuracy of 94.76%, and precision and recall of 94.28%
and 95.23%, which is still in the good category. This
difference is likely due to the complexity of the DenseNet
structure, which results in feature redundancy in smaller
datasets. Overall, this study demonstrates that the use
of CNN architecture in classifying ECG signals of autistic
children is auspicious, especially with deep architectures
such as XceptionNet. These findings can be the basis
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for the development of an automatic and non-invasive
ECG signal-based heart monitoring system for children
with special needs.
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