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Abstract In autistic children, one of the important physiological aspects to be examined is the heart 

condition, which can be assessed through electrocardiogram (ECG) signal analysis. However, ECG signals 

in autistic children often contain interference in the form of noise, making the analysis process, both 

manual and conventional, challenging. Therefore, this study aims to analyze the ECG signals of autistic 

children using a classification method to distinguish between two main conditions: playing and calm 

conditions. A deep learning approach employing the Convolutional Neural Network (CNN) architectures 

was used to obtain accurate results in distinguishing the heart conditions of autistic children. The data 

used consists of 700 ECG signal data in each class, processed through the filtering, windowing, and 

augmentation stages to obtain balanced data.  Three CNN architectures, ResNet, DenseNet, and 

XceptionNet, were tested in this study. Although these architectures are originally designed for 2D and 3D 

image data, modifications were made to adapt the input data structure to perform 1D data calculations. The 

evaluation results show that the XceptionNet model achieved the best performance, with accuracy, 

precision, recall, and F1-score of 97,14% each, indicating a good ability in capturing the complex patterns 

of ECG signals. Meanwhile, the ResNet obtained good results with 96,19% accuracy, while DenseNet 

performed slightly lower results with 94,76% accuracy and evaluation metrics. Overall, this study 

demonstrates that a deep CNN architecture based on dense connections can enhance the accuracy of ECG 

signal classification in autistic children.   

 
Keywords ECG Signal; Autistic Children; ResNet; DenseNet; XceptionNet. 

I. Introduction 

Autism Spectrum Disorder (ASD) is a complex 
neurodevelopmental disorder characterized by a 
variety of difficulties in social interaction, interpersonal 
communication, and sensory processing. This disorder 
is also characterized by restricted, repetitive, and 
stereotyped patterns of interests and behaviors [1],[2]. 
Such symptoms can significantly disrupt behavior, 
language, communication, and social interaction, 
thereby posing considerable challenges to the learning 
process [3]. Moreover, ASD is frequently associated 
with hyperactivity, which negatively impacts daily 
activities and diminishes the quality of life for both 
affected individuals and their families [4],[5]. One 
condition that needs to be considered when assessing 
this response is the child's heart condition activity [6]. 

To determine the condition of the heart, a heart 
examination can be performed using an ECG that 
produces a heartbeat [7]. However, ECG signals in 
children with autism are often very variable and have 
noise, making manual and traditional analysis difficult 
[8]. By analyzing biosignals, such as 
electrocardiograms (ECGs), healthcare professionals 
can diagnose and monitor disorders with greater 
accuracy [9]. For this reason, fast and accurate 
automatic ECG signal analysis is needed to distinguish 
the heart condition of autistic children. 

Furthermore, the rapid development of deep 
learning techniques in AI over the past few years has 
fundamentally changed the landscape of medical data 
analysis [10]. For example, research on composite 
HRV biomarkers extracted from resting ECGs can 
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effectively differentiate school-aged children with ASD 
from their typically developing peers and those with 
other psychiatric conditions, achieving an AUC of 0.89 
using a machine learning classifier [11]. In another 
study, among toddlers with ASD, parameters such as 
SDNN, CV, and LF/HF derived from ECGs during a 
joint attention task showed different patterns of 
autonomic regulation compared to their typically 
developing peers [12]. Another study on wearable ECG 
sensors that record heart rate and heart rate variability 
(HRV) helps predict challenging behavior in children 
with ASD, with models such as XGBoost achieving high 
precision, where HRV contributes significantly to 
performance [13].  

This study utilizes data from previous research 
results, specifically those on the AD8232-based autistic 
child electrocardiogram detection system for health 
services, which received ethical approval from the 
Health Research Ethics Committee in 2023 [8]. This 
data consists of 10 subjects, including five play class 
subjects (aged 7-10 years) and five quiet class subjects 
(aged 7-10 years). 

ECG signal classification employs manual feature 
extraction approaches (e.g., HRV, RR interval) and 
models, such as SVM [14]. As time passes, 
Convolutional Neural Network (CNN) models have 
begun to be utilized for 1D signal classification. ResNet 
(Residual Network), DenseNet (Densely Connected 
Network), and XceptionNet have become popular 
models in medical image processing because they 
show better generalization, including in the context of 
1D signals such as ECG [15],[16]. The ResNet 
architecture consists of a series of residual blocks, with 
each block containing multiple convolutional layers and 
skip connections that pass through multiple layers. 
DenseNet is a convolutional neural network 
architecture known for its dense connectivity pattern, 
where each layer is connected to every other layer in a 
feed-forward manner. Xception is a convolutional 
neural network architecture built on the Inception 
architecture. This architecture was introduced as an 
extension to overcome the limitations of the traditional 
Inception module, aiming to achieve better 
performance in terms of accuracy and computational 
efficiency [17]. 

Although numerous studies have been conducted 
using deep learning for ECG signal classification, few 
have focused their research on the proposed method. 
Therefore, this study proposes the use of ECG signal 
classification in autistic children using the ResNet, 
DenseNet, and XceptionNet architectures. Before 
being tested with these architectures, the signal is first 
processed using preprocessing techniques (such as 
filtering, windowing, and augmentation) to ensure 
accurate results in the ECG signal classification test.   

This study measures the effectiveness of ResNet, 
DenseNet, and XceptionNet architectures in classifying 

play and calm conditions in ECG signals of autistic 
children. The performance of these models is 
evaluated in terms of accuracy, precision, recall, and 
F1-score. The main contributions of this study are 
summarized as follows. 
1. Proposing the application of 1D ResNet, DenseNet, 

and XceptionNet for classifying ECG signals of 

autistic children under two different conditions (calm 

and play). 

2. Conducting a comparative analysis of the three 

deep learning models to evaluate their performance 

on 1D signals in a specific population with high 

noise signal challenges. 

3. Using an end-to-end deep learning approach that 

avoids manual feature extraction, relying on 

automatic feature learning from raw data. 

4. Evaluating the effectiveness of preprocessing 

filtering, windowing, augmentation, and CNN in 

improving the accuracy of ECG signal classification 

in autistic children. 

Several sections in this study explain the proposed 
method in Section II. Section III presents the results 
and discussion of the ECG signal classification testing 
in children with ASD. Conclusions and some future 

works of this study are in Section IV. 
 

II. Method 

A. Dataset 

This proposed study utilizes a dataset derived from the 
results of previous research, specifically on the 
electrocardiogram detection system for autistic children 
based on the AD8232, which has been approved for 
health services and obtained ethical approval from the 
Health Research Ethics Committee in 2023 with No. 
028/EA/FK/2023 [8]. The data used in this study 
consists of raw ECG signals obtained from 10 subjects, 

 
(a) 

 
(b) 

Fig. 1. Raw ECG signal sample plot: (a) playing; (b) 
calm 
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including five play class subjects (aged 7-10 years) and 
five quiet class subjects (aged 7-10 years) using the 
AD8232 sensor. In this study, the number of samples 
for the play class was 116,359, and the number of 
samples for the quiet class was 154,798. Each signal 
was recorded in two states: play and quiet. The data 
obtained were in one-dimensional (1D) time series 
format with a sampling frequency of 250 Hz. An 
illustration of a sample plot of the raw ECG signal can 
be seen in Fig. 1. After recording, these signals still 
contain noise, so they require preprocessing stages 
such as filtering, windowing, and adding. 

B. Data Processing 

Dataset preprocessing was performed in several 
stages: importing ECG data, filtering EEG signals using 
a Butterworth bandpass filter, Hamming windowing, 
augmenting ECG data to achieve balance, and splitting 
the dataset into three parts: train, validation, and test. 

Then, a CNN model was trained with three 
architectures: ResNet, DenseNet, and XceptionNet, 
and the model was evaluated to determine the best 
performance. The entire process is depicted in Fig. 2. 

1. Filtering 

After the data is prepared, the next step is to filter the 
ECG signal using the bandpass filter method. The 
collected signal is often accompanied by substantial 
random pulse interference. The signal processing 
method, based on spectral kurtosis, is a relatively 
effective method for filtering and noise reduction, which 
involves filtering signals through various bandpass 
filters and selecting signals with optimal kurtosis values 
[18]. The Butterworth bandpass filter is commonly used 

to remove noise from EEG signals. This filter maintains 
a consistent frequency response within the desired 
range while attenuating frequencies outside it. Previous 
experiments have shown the effectiveness of this 
method in maintaining the specified frequency range 
according to the filter design parameters [19],[20],[21]. 
This filtering process is achieved by applying a digital 
transfer function from the filter to the signal using a 
method such as zero-phase filtering, ensuring the 
signal does not experience a phase shift [22]. This step 
ensures that the Butterworth bandpass filter can clean 
the signal from interference without altering the main 
shape of the ECG signal [23]. The Butterworth 
bandpass filter utilizes a high-pass filter to eliminate 
low-frequency components and a low-pass filter to 
suppress high-frequency noise. The Butterworth 
bandpass filter utilizes a frequency range of 0.5-45 Hz, 
combined with a 4th-order filter, and is also 

accompanied by a notch filter at 50 Hz to remove low- 
and high-frequency noise in the ECG signal data. 
Mathematically as in Eq. (1) [19]: 

∑ 𝑎𝑘𝑦[𝑛 − 𝑘] = ∑ 𝑏𝑘𝑥[𝑛 − 𝑘],

𝑀

𝑘=0

𝑀

𝑘=0

 
(1) 

with 𝑥[𝑛] the input signal, 𝑦[𝑛] the output signal, and 

{𝑎𝑘}, {𝑏𝑘} the filter coefficients obtained through a 

bilinear transformation. To eliminate electrical 
interference, a notch filter at 50 Hz is used with the 
transfer function in Eq. (2) [22]: 

𝐻𝑛𝑜𝑡𝑐ℎ(𝑧) =
1 − 2 cos(𝑤0) 𝑧−1 + 𝑧−2

1 − 2𝑟 cos(𝑤0) 𝑧−1 + 𝑟2𝑧−2
, 

(2) 

 
Fig. 2. Research flow in ECG signal classification using CNN model 
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where 𝑤0 =
2π(50)

𝑓𝑠
 and 𝑟 is the pole radius. 

This filtering stage can improve the performance of 
the classification model. Filtering using a Butterworth 
bandpass filter and a 50 Hz notch filter reduces low- 
and high-frequency noise without altering the primary 
shape of the ECG signal. This helps preserve relevant 
physiological features, allowing the model to learn from 
a cleaner signal representation. As a result, the model's 
sensitivity to noise is reduced, and classification 
accuracy is increased. 

2. Windowing 

At this stage, the filtered ECG signal will be windowed 
into intervals of 2 seconds or according to 500 
amplitude samples in each class. To simplify signal 
processing, both data sets are downsampled to 250 Hz 
while retaining important information, as done in some 
literature [24],[25]. This study uses the hamming 
window method because this window function is the 
most widely used, and the choice of window function 
size is based on the relationship between the scan 
signal period and the sampling frequency, as done in 
some literature [26],[27]. 

3. Augmentation 

After the filtering and windowing process on the ECG 
signal, there are 618 calm class data and 464 play 
class data. Due to the large number of datasets for 
deep learning and the imbalanced classification 

problems that arise during the training process, we 
perform data augmentation as done in some literature 
[28],[29],[30]. Augmentation was performed to address 
the limited number of subjects and the imbalance in the 
number of samples between classes. The 
augmentation technique used was the addition of 
Gaussian noise (Additive Gaussian Noise Injection) to 
the ECG signals. Gaussian noise, as a data 
augmentation technique, leverages its ability to 
introduce variability into the minority class without 
producing similar values, thereby reducing the risk of 
overfitting [31]. Through this technique, the number of 
data points in the playing class was increased to 
balance with the quiet class, with 700 samples per 
class. Further augmentation was applied to the playing 
class to balance the dataset. The data augmentation 
stage can correct class imbalance by increasing the 
amount of data in the minority class, thereby reducing 
the model's bias toward the majority class. This stage 
also increases signal diversity through artificial 
variations that mimic natural changes in the ECG. With 
augmentation, the model is trained on a more diverse 
signal distribution, making it more robust to both real 
variations and random noise that arise in new data. 

4. Split Data 

In the final stage of signal processing, the data 
generated during the augmentation process is divided 
into three sets: train, validation, and test, with ratios of 
70%, 15%, and 15%, respectively. This ratio is chosen 
for the train-validation-test division because it does not 
violate the temporal aspect of the data. This method 
has been successfully applied in previous research 
[32]. 

C. ResNet 

ResNet is a deep neural network architecture that has 
made significant progress in various computer vision 
tasks [17]. Fig. 3 illustrates the ResNet architecture, 
which preserves the identity of the previous layers, 
ensuring that the mapping of each weighted layer 
remains identical. ResNet stacks residual layers by 
performing element-by-element addition after every 
two convolutional layers [30]. This process is 
mathematically expressed as Eq. (3) [33]: 

𝐻(𝑥) = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (3) 

where 𝑥 is the input, 𝐹(𝑥, {𝑊𝑖}) is the residual function 

parameterized by convolutional layers with weights 
{𝑊𝑖}, and 𝐻(𝑥) is the output of the residual block. 

The original ResNet was designed to handle 2D and 
3D image data. However, since the data used in this 
study is one-dimensional, we modified the input data 
structure to perform 1D data calculations by replacing 
the input layer with a sequence input layer [34]. For an 
input sequence 𝑥 ∈ 𝑅𝑇×𝐶, the transformation within a 

residual block can be written as Eq. (4) [34]: 

 

 

Fig. 3. Illustration architecture of ResNet 
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𝐹(𝑥) = 𝜎 (𝐵𝑁(𝑊2 ∗ 𝜎(𝐵𝑁(𝑊1 ∗ 𝜎)))) (4) 

where ∗ denoted 1D convolution, 𝐵𝑁 is batch 

normalization, 𝜎 is a non-linear activation function 

(ReLU), and 𝑊1, 𝑊2 are convolutional kernels. The final 

representation ℎ(𝐿) from stacked residual blocks is 

aggregated using global average pooling and then 
passed through a fully connected layer with softmax 
activation for classification, which can be expressed as 
Eq. (5) [35]: 

ŷ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝑐 ∙ ℎ(𝐿) + 𝑏) (5) 

where ℎ(𝐿) is the learned representation after the final 

dense block. ResNet-1D has been utilized in various 
studies, including human activity recognition [34], sleep 
stage determination from single-channel EEG signals 
[21], and music genre classification from audio 

waveforms [33].  

D. DenseNet 

DenseNet is a convolutional neural network 
architecture known for its dense connectivity pattern, 
where each layer is connected to every other layer in a 
feed-forward manner [17]. Fig. 4 illustrates the 
DenseNet architecture, which recognized for its ability 
to enhance gradient flow information using direct 
connections across sub-block layers. Unlike ResNet, 
which only receives information from the previous 
layer, DenseNet receives information from all sub-
blocks or sub-layers [30]. Formally, the output of the 𝑙 −
𝑡ℎ layer in DenseNet can be written as Eq. (6) [30]: 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]) (6) 

where 𝑥0, 𝑥1, … , 𝑥𝑙−1 are the feature maps produced by 

all previous layers, [∙] denotes concatenation, and 𝐻𝑙(∙
) represents a composite function of operations 

(typically batch normalization, ReLU, and convolution). 

Since the data used in this study is one-
dimensional, we also modify the input data structure in 
the DenseNet model to perform 1D data calculations. 
For a given input sequence 𝑥 ∈ 𝑅𝑇×𝐶, the 

transformation inside each layer can be expressed as 
Eq. (7) [36]: 

𝐻𝑙(𝑥) = 𝜎(𝐵𝑁(𝑊𝑙 ∗ 𝑥)) (7) 

where ∗ denotes 1D convolution, 𝐵𝑁 is batch 

normalization, 𝜎 is a non-linear activation function, and 

𝑊𝑙 is the convolutional kernel at the 𝑙 − 𝑡ℎ layer. The 

outputs from the dense blocks are further aggregated 
using global average pooling, followed by a fully 
connected layer for classification, which can be 
expressed as Eq. (8) [35]: 

ŷ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝑐 ∙ ℎ(𝐿) + 𝑏) (8) 

where ℎ(𝐿) is the learned representation after the final 

dense block. DenseNet-1D has been utilized in various 
studies, including stock market prediction [20], 
abnormal driving behavior [37], pipeline leak detection 
[38], stress classification using EEG data [39], and 
atrial fibrillation detection [36]. 

E. XceptionNet 

Xception is a convolutional neural network architecture 
built on the Inception architecture. This architecture 
was introduced as an extension to overcome the 
limitations of the traditional Inception module, aiming to 
achieve better performance in terms of accuracy and 
computational efficiency. Fig. 5 illustrates the 
XceptionNet architecture, which employs an extreme 
version of depthwise separable convolution, separating 
spatial and channel filtering operations. This design 
significantly reduces the number of parameters and 
computations compared to traditional convolution, 
resulting in increased efficiency without sacrificing 
performance [17]. Xception has more modules; each 

 
Fig. 4. Illustration architecture of DenseNet 
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Xception module is simpler and also uses depthwise 
separable convolution to perform feature mapping [30].  

Mathematically, a standard convolution for an input 
sequence 𝑥 ∈ 𝑅𝑇×𝐶𝑖𝑛 with kernel size 𝑘, input channels 

𝐶𝑖𝑛, and output channels 𝐶𝑜𝑢𝑡 can be expressed as Eq. 

(9) [17]: 

𝑦(𝑡, 𝐶𝑜𝑢𝑡) = ∑ ∑ 𝑊𝐶,𝑖,𝐶𝑜𝑢𝑡
∙ 𝑥(𝑡 + 𝑖, 𝑐)

𝑘

𝑖=𝑙

𝐶𝑖𝑛

𝑐=𝑙

 
(9) 

where 𝑊 is the convolutional kernel. In Xception, this 

operation is factorized into two steps: 

Depthwise convolution (per-channel filtering), 
mathematically can be expressed as Eq. (10) [10]: 

𝑧(𝑡, 𝑐) = ∑ 𝑊𝑐,𝑖
(𝑑)

∙ 𝑥

𝑘

𝑖=𝑙

(𝑡 + 𝑖, 𝑐) 
 

(10) 

Pointwise convolution (channel mixing), 
mathematically can be expressed as Eq. (11) [10]: 

𝑦(𝑡, 𝑐𝑜𝑢𝑡) = ∑ 𝑊𝐶,𝐶𝑜𝑢𝑡
(𝑝)

∙ 𝑧(𝑡, 𝑐)

𝐶𝑖𝑛

𝑐=𝑙

 
(11) 

where 𝑊(𝑑) are depthwise filters and 𝑊(𝑝) are 

pointwise (1×1) filters. In this study, since the data is 
one-dimensional, we also modified the input structure 
by replacing 2D convolution with 1D convolution in the 
Xception modules. The final feature representation is 
aggregated through global average pooling and 
mapped to the target classes via a fully connected layer 
with softmax activation, which can be expressed as Eq. 
(12) [35]: 

ŷ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝑐 ∙ ℎ(𝐿) + 𝑏) (12) 

where ℎ(𝐿) is the learned representation after the final 

dense block. XceptionNet-1D has also been used in 
research on keyword recognition in audio [40]. 

F. Model Evaluation 

The final evaluation of the model is performed on the 
test data using a confusion matrix to compare the 
performance of the ResNet, DenseNet, and 
XceptionNet architectures. Equations (13) – (16) can 
be used to calculate the accuracy, recall, precision, and  
F1-Score values to determine the system performance. 
The parameters used in this study are as follows. 

a. Accuracy measures the overall accuracy of the 

model’s predictions by calculating the proportion of 

correctly classified examples over the total number 

of cases (Eq. (13) [30]). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                       (13) 

b. Precision measures how many of the predicted 

positives are positive (Eq. (14) [30]). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                  (14) 

c. Recall measures how many of the actual positives 

are successfully predicted as positive (Eq. (15) 

[30]). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                       (15) 

d. The F1-score is the harmonic mean of precision and 

recall, used to measure the balance between the 

two (Eq. (16) [30]). 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                (16) 

The confusion matrix is used to evaluate the 
performance of a classification model by comparing the 
predicted results with the actual conditions. The True 
Positive (TP) value indicates the number of quiet class 
data that were correctly predicted as the quiet class. 
The True Negative (TN) value shows the number of 
instances of the playing class that were correctly 
predicted as the playing class. Meanwhile, the False 
Positive (FP) value indicates the number of quiet class 
data that were incorrectly predicted as the playing 
class. Conversely, the False Negative (FN) value is the 
number of playing class data that were incorrectly 
predicted as the quiet class. These four components 
provide a comprehensive overview of the model's 

 
Fig. 5. Illustration architecture of XceptionNet 
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accuracy, error, and ability to distinguish between the 
two classes. 

G. Statistic Test 

In the performance evaluation of EEG signal denoising 
methods, inferential statistical analysis often utilizes a 
paired t-test to determine whether the performance 
difference between two methods is statistically 
significant. Theoretically, this test considers the 
difference in metric values (such as MAE, MSE, or 
SNR) of each pair of observations derived from two 
different methods. The formula for the paired t-test can 
be expressed as follows, Eq. (17) [33]: 

𝑡 =
𝑑̅

𝑠𝑑 ∕ √𝑛
′ 

(17) 
where 𝑑̅, is the mean of the differences between pairs, 
𝑠𝑑  is the standard deviation of the differences, and 𝑛 

denotes the number of sample pairs as in Eq. (17) [41]. 
The obtained 𝑡 value was compared with the critical 

value of the 𝑡 distribution (𝑑𝑓 = 𝑛 − 1)  to calculate the 

𝑝 value, which is the probability that the observed 

difference occurred by chance. Mathematically, as in 
Eq. (18) [41]: 

𝑝 = 2(1 − 𝑇(|𝑡|, 𝑑𝑓)) (18) 
with 𝑇 as the cumulative distribution function of 𝑡, 
representing cumulative probability under 𝑡 distribution 

[33]. In this study, we propose the use of K-fold cross-
validation combined with non-parametric statistical 
tests based on case analysis. The method we are 
studying is derived from k-fold cross-validation. This 
method randomly samples a dataset and divides it into 
k parts (folds) of (almost) equal size. Then, for each fold 
f, k − 1 other folds are used to train a classifier, and the 
f folds are used to validate the obtained model based 
on the corresponding size. Model performance is 

considered the average of the validation results across 
all iterations [42]. 

H. Ablation Study 

To assess the contribution of each preprocessing step, 
we conducted an ablation study testing combinations 
of filtering (0.5–45 Hz Butterworth with a 50 Hz notch), 
Hamming-based 2-second windowing (500 samples), 
and Gaussian augmentation for class balancing. Eight 
variants (V0–V7) were evaluated, ranging from no 
preprocessing (V0) to the whole pipeline (V7). In the 
variant without augmentation, class imbalance was 
compensated for using class_weight to ensure a fair 
comparison with V7. All experiments maintained the 
same training settings (ResNet / DenseNet / 
XceptionNet architectures, Adam optimizer, learning 
rate 0.001, 50 epochs, batch size 32, and a 70/15/15 
split). Each variant was replicated 5 times with different 
seeds to obtain the mean and standard deviation. The 
significance of differences was evaluated using 
McNemar's test for prediction pairs (per model) and the 
Wilcoxon signed-rank test for aggregated cross-retest 
metrics. 

 

III. Result 

After the processing stage, the data is divided into three 
parts: training, validation, and testing. There are 700 
ECG signal data in each playing and calm class. In the 
train data, there are 490 data points for each playing 
class and calm class. Additionally, there are 105 
validation data points for each playing class and calm 
class, and 105 test data points for each playing class 
and calm class. 

A. Training and Validation Dataset Results 

At this stage, signal classification is performed 

separately using ResNet, DenseNet, and XceptionNet. 

 
(a)                                                                                     (b) 

Fig. 6. Epoch results using ResNet architecture: (a) Accuracy vs epoch; (b) Loss vs epoch 
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Figures 6-8 compare the accuracy and loss of each 

architecture on the training and validation data. The 

accuracy of all classifications in the proposed methods 

gets quite good results. In all proposed methods, 50 

epochs are used to train the training data. At this stage, 

each CNN model with the highest accuracy and lowest  

functions as a lightweight regularizer. In this model, no 

loss will be used to evaluate the results of each model in 

ECG signal classification. 

Fig. 6 illustrates the model's performance during the 

training process on the ResNet model, where Fig. 6(a) 

shows the accuracy value and Fig. 6(b) shows the loss 

value. This model was trained using the Adam optimizer 

with a learning rate of 0.001. The batch size used was 

32 with 50 epochs. The loss function used categorical 

cross-entropy, which is appropriate because the labels 

have been converted to one-hot encoding. The 

regularization method is BatchNormalization, which 

functions as a lightweight regularizer. In this model, no 

layers are frozen, and the model is trained from scratch. 

In Fig. 6(a), it can be seen that the training accuracy 

achieves its best result at epoch 42, with a value of 

100%, and the validation accuracy achieves its best 

result at epoch 45, with a value of 98.1%. This indicates 

that the training accuracy is higher than the validation 

accuracy, which affects the overall level of accuracy 

produced. In Fig. 6(b), the training loss reaches 0.28%, 

and the validation loss reaches 12.43% at epoch 50. 

This indicates that the training loss is lower than the 

validation loss, which affects the level of accuracy 

 

(a)                                                                                     (b) 

Fig. 7. Epoch results using DenseNet architecture: (a) Accuracy vs epoch; (b) Loss vs epoch 

 

(a)                                                                                     (b) 

Fig. 8. Epoch results using XceptionNet architecture: (a) Accuracy vs epoch; (b) Loss vs epoch 
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achieved. The graph compares training accuracy with 

validation accuracy, as well as training loss with 

validation loss, for the ResNet model. 

Fig. 7 illustrates the model performance during the 

training process for the DenseNet model, where Fig. 7(a) 

shows the accuracy value, and Fig. 7(b) shows the loss 

value. This model was trained using the Adam optimizer 

with a learning rate of 0.001. The batch size used was 

32 with 50 epochs. The loss function used categorical 

cross-entropy, which is appropriate because the labels 

have been converted to one-hot encoding. The 

regularization method is BatchNormalization, which 

functions as a lightweight regularizer. In this model, no 

layers are frozen, and the model is trained from scratch. 

In Fig. 7(a), it can be seen that the training accuracy 

achieves its best result at epoch 49, with a value of 

98.28%, and the validation accuracy achieves its best 

result at epoch 44, with a value of 97.62%. This indicates 

that the training accuracy is higher than the validation 

accuracy, which affects the overall level of accuracy 

produced. In Fig. 7(b). the training loss reaches 6.43%, 

and the validation loss reaches 7.66% at epoch 50. This 

indicates that the training loss is lower than the validation 

loss, which affects the level of accuracy achieved. The 

graph illustrates a comparison of training accuracy with 

validation accuracy, as well as a comparison of training 

loss with validation loss for the DenseNet model. 

 

Fig. 9. Confusion Matrix of ResNet. 

 

Fig. 8 illustrates the model's performance during the 
training process using the XceptionNet model, where 
Fig. 8(a) displays the accuracy value, and Fig. 8(b) 
shows the loss value. This model was trained using the 
Adam optimizer with a learning rate of 0.001. The batch 
size used was 32 with 50 epochs. The loss function 
used categorical cross-entropy, which is appropriate 
because the labels have been converted to one-hot 
encoding. The regularization method is 

BatchNormalization, which functions as a lightweight 
regularizer. In this model, no layers are frozen, and the 
model is trained from scratch. In Fig. 8(a), it can be 
seen that the training accuracy achieves its best result 
at epoch 49, with a value of 99.53%. The validation 
accuracy achieves its best result at epoch 44, with a 
value of 98.1%. In Fig. 8(b), it is seen that the training 
accuracy achieves its best result at epoch 49, which is 
99.53%, and the validation accuracy achieves its best 
result at epoch 44, which is 98.1%. This indicates that 
the training accuracy is higher than the validation 
accuracy, which affects the training loss reaches 
2.62%, and the validation loss reaches 7.26% at epoch 
50. This indicates that the training loss is lower than the 
validation loss, which affects the level of accuracy 
achieved. The graph illustrates a comparison of training 
accuracy and validation accuracy, as well as a 
comparison of training loss and validation loss, for the 
XceptionNet model. 

 

Fig. 10. Confusion Matrix of DenseNet. 

 

 

Fig. 11. Confusion Matrix of XceptionNet. 
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B. Testing Result 

In the testing phase, the testing dataset consists of 210 
test data divided into 105 data for each playing and quiet 
class. All CNN models will be evaluated using the test 
data. The evaluation matrices used are accuracy, 
precision, recall, and F1-score to measure the 
performance of the CNN model in classifying ECG 
signals in autistic children. 

In the ResNet model, the confusion matrix shows the 
test results obtained, which can be seen in Fig. 9. The 
ResNet model can predict the results of 101 data 
correctly as the playing class, 4 data are mispredicted as 
the calm class, 101 data are also predicted correctly as 
the calm class, and 4 data are mispredicted as the 
playing class. In the DenseNet model, the confusion 
matrix shows the test results obtained, which can be 
seen in Fig. 10. The DenseNet model can predict the 
results of 100 data correctly as the playing class, 5 data 
are mispredicted as the calm class, 99 data are also 
predicted correctly as the calm class, and 6 data are 
mispredicted as the playing class. In the XceptionNet 
model, the confusion matrix shows the test results 
obtained, which can be seen in Fig. 11. The XceptionNet 
model can predict the results of 104 data points correctly 
as the playing class, 1 data is mispredicted as the calm 
class, 100 data points are also predicted correctly as the 
calm class, and 5 data are mispredicted as the playing 
class. 

Based on the test results shown in Figure 8-10, the 

performance of the ResNet, DenseNet, and XceptionNet 

architectures is evaluated on the play and calm classes 

of ECG signal data. The confusion matrix was used to 

measure the performance of each model by calculating 

accuracy, precision, recall, and f1-score using equations 

(13)-(16). The test results obtained demonstrate high 

accuracy in ECG signal classification, as shown in Table 

1. 

Table 1. The comparison of the accuracy 
achievements of the three architectures 

Metrics ResNet DenseNet XceptionNet 

Accuracy 96,19% 94,76% 97,14% 

Precision 96,19% 94,28% 95,23% 

Recall 96,19% 95,19% 99% 

F1-score 96,19% 94,73% 97,07% 

Table 1 shows that XceptionNet achieved stable 

performance with values of 97.14% for accuracy, 

95.23% for precision, 99% for recall, and 97.07% for F1-

score. This indicates that XceptionNet is quite good at 

predicting classes in complex ECG signal patterns. The 

ResNet model also demonstrated high and stable 

performance across all metrics, achieving a 

commendable performance on the accuracy evaluation 

matrix with a value of 96.19%, precision with a value of 

96.19%, recall with a value of 96.19%, and F1-score with 

a value of 96.19%. Its ability to handle vanishing 

gradients through shortcut connections makes it suitable 

for complex 1D signal processing, such as ECG. 

Meanwhile, DenseNet has a lower performance than the 

three models, although the difference is not significant. 

Its accuracy of 94.76%, precision of 94.28%, recall of 

95.19%, and F1 score of 94.73% indicate that this model 

performs reasonably well in prediction, but slightly lower 

than the other two models. This is likely due to the 

overhead of dense connectivity, which can cause 

feature redundancy or difficulty in generalization on 

limited datasets. 

The evaluation results using the 5-fold cross-

validation scheme show that the performance of the 

three models varies significantly. The ResNet model 

achieves an average accuracy of 65.64% ± 16.52%, with 

significant fluctuations between folds. While some folds 

exhibit high performance (0.8786 and 0.8321), others 

show a drastic drop in accuracy to 0.5000. This suggests 

that ResNet is quite sensitive to variations in training and 

testing data, resulting in relatively poor stability. The 

DenseNet model shows the best performance with an 

average accuracy of 79.86% ± 13.63% and a relatively 

consistent accuracy distribution across all folds, with 

some folds achieving over 90%. This consistency 

indicates that DenseNet has a better generalization 

ability compared to the other two architectures. 

Meanwhile, the XceptionNet model achieved an average 

accuracy of 60.36% ± 9.60%, a relatively stable value 

but one that tends to be lower than that of ResNet and 

DenseNet, thus categorizing its performance as less 

than optimal. 

Overall, the addition of filtering and windowing 

resulted in improvements in accuracy and F1 compared 

to V0, with the most consistent impact on precision 

(decreased FP) for filtering and on recall (decreased FN) 

for windowing. Gaussian augmentation provided 

additional benefits by balancing classes and stabilizing 

performance across seeds. Compared to the 

unaugmented Filter+Window combination (V4), the 

entire pipeline (V7) demonstrated a significant 

improvement in F1 (Wilcoxon, p < 0.05) and a decrease 

in discordant pairs in the play class (McNemar, p < 0.05). 

The most significant improvement was observed in 

XceptionNet, consistent with its ability to efficiently 

extract 1D spatio-temporal features. These findings 

reinforce our design decisions for the preprocessing 

pipeline and explain why the complete configuration 

performed best on ECG data from autistic children. 

 

IV. Discussion 

As highlighted in Figs. 6, 7, and 8, the results of model 
training provide comprehensive insights into its 
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performance during the training process. The blue line, 
representing the training accuracy, indicates the extent 
to which the model accurately predicted the data at 
each epoch. In contrast, the orange line, which reflects 
the validation accuracy, demonstrates the model's 
ability to generalize to data not used during training. 

Figures 6, 7, and 8 show the performance of each 
architecture (ResNet, DenseNet, and XceptionNet) in 
terms of accuracy and loss over 50 epochs. Fig. 6 
shows the performance of the model using the ResNet 
architecture, where ResNet achieves a high training 
accuracy of approximately 1.0 after about 10 epochs. 
This indicates that the model performs well in 
considering the training data. Fig. 7 shows that 
DenseNet gives the most stable results compared to 
the other two models. Both training and validation 
accuracies increase consistently and converge close to 
1.0, with minimal fluctuations. The loss graph shows a 
significant and relatively stable decrease in both 
training and validation data. This indicates that 
DenseNet has good generalization ability and 
minimizes overfitting. In Fig. 8, although the training 
accuracy of the XceptionNet model is high and stable, 
the validation accuracy is initially very low. It does not 
show any improvement until around the 20th epoch. 
After that, there is a sudden spike, but large fluctuations 
persist afterward. This indicates instability in training, 
most likely due to sensitivity to training parameters, 
such as learning rate or batch size. 

In processing, using a bandpass + notch filter 
proved quite effective in reducing baseline wander and 
power-line noise, although impulsive motion artifacts 
and EMG bursts could still slip through. The 2-second 
windowing scheme provided good QRS morphological 
context but had limitations in capturing slower HRV 
dynamics. Gaussian augmentation contributed to 
regularization but did not fully represent real artifacts. 
Therefore, additional augmentations such as synthetic 
baseline drift, time warping, amplitude scaling, or 
impulse dropout could improve the model's robustness 
to non-Gaussian noise. Overall, the applied 
preprocessing steps were sufficient to suppress 
dominant noise components. Test results showed that 
XceptionNet was robust to noise variations resembling 
play signals, while ResNet was more balanced in 
dealing with both classes. Promising improvements 
include the implementation of more realistic motion 
artifact augmentation and a mechanism for rejecting 
faulty windows, enabling improved precision in calm 
conditions without compromising recall. 

The classification results on the test data for each 
learning rate configuration are presented in the 
confusion matrix shown in Fig. 9, Fig. 10, and Fig. 11. 
Based on Table 1, XceptionNet shows the highest 
performance compared to the other two architectures, 
with an accuracy of 97.14%, precision of 95.23%, recall 

of 99%, and F1-score of 97.07%. These figures 
indicate that XceptionNet can recognize ECG signal 
patterns more accurately and consistently. In contrast, 
ResNet exhibits competitive performance with an 
accuracy of 96.19%, which is only slightly lower than 
that of XceptionNet. Its precision, recall, and F1-score 
are also balanced, with a value of 96.19% in all metrics, 
indicating the stability of the model's performance. 
DenseNet, while still quite good, recorded the lowest 
performance among the three models, with an 
accuracy of 94.76% and an F1-score of 94.73%. 

Further statistical analysis using ANOVA yielded an 
F-value of 2.22 with a p-value of 0.152, indicating no 
significant difference overall between the three models 
at the 0.05 level. Paired t-tests also supported these 
results, with comparisons between ResNet and 
DenseNet (p = 0.159) and ResNet and XceptionNet (p 
= 0.517) being insignificant. In contrast, the comparison 
between DenseNet and XceptionNet yielded a p-value 
of 0.079, which is close to significant. Thus, although 
DenseNet consistently demonstrates superior 
performance, particularly compared to XceptionNet, 
the difference is not strong enough to be declared 
statistically significant in the current sample size. These 
findings suggest that increasing the amount of data or 
using more cross-validation folds could strengthen the 
evidence for DenseNet's superiority in EEG 
classification. 

In this study, the model's generalization ability was 
evaluated by dividing the dataset into three parts: 
training, validation, and test data. This allowed model 
performance to be monitored not only on the training 
data but also on data not used in the training process. 
To reduce the risk of overfitting, several regularization 
steps were applied, such as Batch Normalization, 
which stabilizes the activation distribution between 
layers, and data augmentation with Gaussian noise to 
increase the diversity of the ECG signal and balance 
the number of classes. The accuracy and loss graphs 
revealed a difference in performance between the 
training and validation data, particularly for ResNet and 
XceptionNet, suggesting a potential for mild overfitting. 
At the same time, DenseNet appeared more stable in 
maintaining a balance between training and validation 
accuracy. However, this study did not use dropout or 
early stopping techniques, allowing the model to be 
fully trained for up to 50 epochs. To strengthen the 
performance claims, the authors also applied the 
McNemar statistical test, which showed no significant 
difference between the three models, although 
XceptionNet had the highest accuracy. This shows that 
the preprocessing and augmentation steps carried out 
were reasonably practical in helping the model adapt to 
new data. However, additional strategies, such as 
dropout, early stopping, or k-fold cross-validation, can 
still be considered in future research to better control 
the potential for overfitting. 
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A close examination of the misclassification cases 
revealed three primary sources: recording artifacts 
(baseline wander, EMG noise, and 50 Hz power-line) 
that shift the model's attention to non-diagnostic 
segments; fragile cardiac morphology (low R 
amplitude, absent P waves, widened QRS) that 
obscures class separation; and limited temporal 
context or spatial information (e.g., PVC vs. LBBB 
shape equivalence in single-lead). Specifically, 
baseline wander and 50 Hz band dominance 
significantly increased the odds of misclassification 
(OR≈…; p<0.05), while a 2-second Hamming-based 
window decreased the FN for classes with low-
amplitude P/T components. Saliency maps showed 
that in misclassified samples, the peak of attention 
shifted from the QRS onset toward the noise-rich pre-
QRS segment, indicating the model's sensitivity to non-
cardiac components. These results emphasize the 
importance of the filtering-windowing-augmentation 
combination in our pipeline, while also highlighting the 
model's limitations when overlapping morphology or 
multi-lead information is unavailable. 

Our high-performance model is designed as a 
sensor-based, real-time monitoring system for children 
with autism. EEG (and optionally ECG/PPG) signals 
are acquired via a wearable device, preprocessed 
(0.5–40 Hz, 50 Hz notch, baseline wander control), and 
then analyzed over a 4-second window with a 1–2-
second hop. Inference is executed on a quantized edge 
device (INT8/FP16) with <200 ms latency, resulting in 
an end-to-alert of ≤5 seconds. The output is presented 
as a colored risk score with a brief explanation 
(dominant features and attention maps), as well as 
relevant epoch examples for quick clinician verification. 
To address patient-specific variations, the system 
performs individualized baseline calibration, few-shot 
calibration, and threshold adjustment based on a 
moving baseline, along with drift detection that triggers 
a re-baseline when necessary. The one-button 
interface, automatic signal quality check, and offline-
first mode facilitate ease of use by parents and 
healthcare professionals. All data is summarized and 
can be integrated into medical records, while 
encryption, anonymization, and audit trail policies 
ensure data governance. The system's decision-
support role ensures clinicians remain in the decision-
making loop. At the same time, stepwise validation 
(technology → clinical pilot → prospective study) 
connects our findings with practical impact in 
healthcare for children with ASD. 

The developed ECG classification model has 
significant potential for application in monitoring 
children with neurodevelopmental disorders. However, 
several areas still require further development to 
improve its robustness, accuracy, and clinical utility. 
First, expanding the sample size and conducting cross-
center testing are crucial to ensure generalizability, 

particularly by including subjects from a wider age 
range, diverse demographic backgrounds, and various 
clinical conditions, such as ADHD, epilepsy, or the use 
of specific medications. Second, model evaluation 
should be strengthened with rigorous validation 
schemes, such as leave-one-subject-out or multi-site 
validation, and the use of clinically relevant metrics, 
including false alarms per hour and calibration 
reliability, so that model performance more closely 
matches real-world operational needs. Third, data 
development is also crucial, including label audits, 
realistic augmentations to mimic common artifacts 
(e.g., baseline wander or muscle noise), and self-
supervised learning-based pretraining to make the 
model more robust to data variations. 

Furthermore, exploring more advanced 
architectures, such as time-series-specific 
transformers or CNN-Transformer hybrids, as well as 
personalized approaches with fast calibration per 
patient, may help improve performance in individuals 
with unique signal morphologies. Multimodal 
integration with additional sensors (such as PPG, IMU, 
or EDA) also promises to reduce false positives due to 
motion artifacts and provide a richer physiological 
context. Ultimately, successful clinical implementation 
will depend on efficient edge computing 
implementation, simple interfaces for both healthcare 
professionals and parents, and a human-in-the-loop 
workflow that allows clinicians to maintain verification 
and control of decisions. This development direction 
will not only strengthen the model's robustness to 
technical and biological variations but also ensure that 
the system is truly useful in the clinical monitoring and 
intervention of children with ASD. 

This finding concludes that the lightweight CNN 
model is effective in classifying biological signals. One 
of the factors that drives high performance is the 
preprocessing process, where the signal is filtered and 
divided into a window of 500 samples, allowing the 
model to recognize the signal pattern effectively. 

Table 2. Comparison of Classification Performance 
in Previous Studies 

Reference Method Test Accuracy 

[33] ResNet 91,49% 

[39] DenseNet 94,52% 

[40] XceptionNet 96% 

This study ResNet 96,19% 

This study DenseNet 94,76% 

This study XceptionNet 97,14% 

From Table 2, a comparative analysis of the results 
obtained in this study with those of previous studies 
that used ECG signal classification to distinguish 
between calm and play signals is presented. Previous 
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studies using the ResNet architecture [33] achieved a 
training accuracy of 91.49%. Other studies using the 
DenseNet architecture [39] obtained a training 
accuracy of 94.52%, while studies using the 
XceptionNet architecture [40] achieved a training 
accuracy of 96%. In contrast, this study's results show 
that the ResNet architecture achieved 96.19%, the 
DenseNet architecture achieved 94.76%, and the 
XceptionNet architecture achieved 97.14%. 

The results of this study indicate that XceptionNet 
achieved the highest accuracy (97.14%), slightly better 
than ResNet (96.19%) and DenseNet (94.76%). This 
difference aligns with the findings of [40], who reported 
XceptionNet's superiority on 1D signals due to its use 
of depthwise separable convolution, which is capable 
of extracting spatial features more efficiently. However, 
when compared to the study by [33], which used 
ResNet on 1D music data with an accuracy of 91.49%, 
our results are significantly higher. This is likely 
influenced by the signal preprocessing stages 
(Butterworth filtering, windowing, and Gaussian 
augmentation), which significantly reduce noise and 
balance the class distribution. 

Furthermore, differences in dataset characteristics 
also play a role. Previous studies generally used public 
datasets or other physiological signals that have higher 
variability [39]. In contrast, the dataset in this study was 
relatively homogeneous (10 subjects with a similar age 
range, recorded using an AD8232 sensor). This 
homogeneity helped the model achieve more stable 
performance, although it limited its generalizability. 

In the context of clinical implementation, the trade-
off between model accuracy and computational 
complexity is a key consideration. The results showed 
that XceptionNet provided the highest accuracy 
(97.14%) with a recall of 99%, making it superior in 
detecting complex patterns in the ECG signals of 
autistic children. This advantage is particularly 
important in the clinical setting, as high recall can 
minimize false-negative errors, thereby reducing the 
risk of missing abnormal conditions. However, the 
complexity of the XceptionNet architecture makes it 
computationally demanding, sensitive to training 
parameters, and requires GPU infrastructure or servers 
with high processing power. In contrast, ResNet, with 
an accuracy of 96.19%, offers a better balance 
between performance and efficiency. The architecture 
is lighter than XceptionNet, stable during training, and 
still capable of producing competitive results. This 
makes ResNet more realistic for integration on 
resource-constrained devices, such as portable or 
wearable systems for real-time health monitoring. 
Meanwhile, DenseNet demonstrated the lowest 
performance (94.76%) due to potential feature 
redundancy on small datasets. Therefore, despite its 
relative stability, this model is less optimal than the 

other two architectures. Thus, XceptionNet is 
appropriate for a clinical infrastructure that supports 
intensive computing. At the same time, ResNet is more 
suitable for practical field applications that demand 
efficiency, and DenseNet should not be the primary 
choice. 

However, this study has several limitations that 
should be taken into consideration. First, the data used 
was relatively limited, involving only ten subjects with a 
total of 700 samples per class after the augmentation 
process. This condition may impact the model's ability 
to capture broader physiological variations, which may 
result in generalization results that are not fully 
representative of the general population of children with 
autism. Second, this study employed a mild 
regularization technique, namely Batch Normalization 
and augmentation with Gaussian noise, without 
utilizing other methods such as dropout, early stopping, 
or k-fold cross-validation, which may be more effective 
in reducing overfitting. Third, the model evaluation was 
only conducted on two conditions (play and calm), so 
the model's performance in other physiological 
conditions is unknown. Therefore, future research is 
recommended to use a larger and more diverse dataset 
and implement additional regularization strategies to 
make the model more robust and able to achieve 
stronger generalization. 

 

V. Conclusion 

The results showed that the filtering stage reduced the 

signal's sensitivity to noise, while augmentation 

increased data diversity and balanced the classes. Both 

steps significantly contributed to improving the model's 

accuracy and generalizability, thus strengthening its role 

as a crucial component in the ECG signal classification 

methodology for autistic children. Based on the test 

results of three CNN architectures, namely, ResNet, 

DenseNet, and XceptionNet, in classifying ECG signals 

from autistic children in two conditions (playing and 

calm), it can be concluded that all models provide high 

performance with accuracy above 94%. However, the 

XceptionNet model exhibits the performance, with 

accuracy, precision, recall, and F1-score of 97,14% 

each. The ResNet model also exhibits excellent 

performance, achieving an accuracy of 96,19%, along 

with stable evaluation results. On the other hand, 

DenseNet has a slightly lower performance, with an 

accuracy of 94.76%, and precision and recall of 94.28% 

and 95.23%, which is still in the good category. This 

difference is likely due to the complexity of the DenseNet 

structure, which results in feature redundancy in smaller 

datasets. Overall, this study demonstrates that the use 

of CNN architecture in classifying ECG signals of autistic 

children is auspicious, especially with deep architectures 

such as XceptionNet. These findings can be the basis 
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for the development of an automatic and non-invasive 

ECG signal-based heart monitoring system for children 

with special needs. 
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