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Abstract Obstructive Sleep Apnea (OSA) is a potentially life-threatening sleep disorder that often remains 

undiagnosed due to the complexity of conventional diagnostic methods such as polysomnography (PSG).  

Currently, there is a lack of accessible, non-invasive diagnostic solutions suitable for home use. This study 

proposes a novel approach to automate OSA detection using single-lead electrocardiogram (ECG) signals 

acquired through non-contact conductive fabric electrodes embedded in a mattress, enabling unobtrusive 

monitoring during sleep. The main contributions of the proposed study are a mattress-embedded 

contactless ECG monitoring system eliminating the discomfort of traditional electrodes, and an advanced 

signal processing framework integrating wavelet decomposition with machine learning for precise OSA 

identification. ECG signals from 35 subjects (30 male, 5 females, aged 27-63 years) diagnosed with OSA 

were obtained from the PhysioNet Apnea-ECG database, originally sampled at 100 Hz and up-sampled to 

250 Hz for consistency with experimental recordings from healthy volunteers tested in various sleep 

positions. Signals were recorded non-invasively during sleep in various body positions and processed 

using the Discrete Wavelet Transform (DWT) up to the third level of decomposition. The processing of ECG 

signals involved Heart Rate Variability (HRV) analysis, which was applied to extract information in the time 

domain, frequency domain, and non-linear properties. By analyzing HRV on the respiratory sinus 

arrhythmia spectrum, the respiration signal was obtained from ECG-derived respiration (EDR).  Feature 

selection was performed using ANOVA, resulting in a set of key features including respiratory rate, SD2, 

SDNN, LF/HF ratio, and pNN50. These features were classified using the XGBoost algorithm to determine 

the presence of OSA. The proposed system achieved a detection accuracy of 96.7%, demonstrating its 

potential for reliable home-based OSA diagnosis. This method improves comfort through non-contact 

sensing and supports early intervention by delivering timely alerts for high-risk patients.  

     

Keywords Obstructive Sleep Apnea; Non-Contact ECG; Heart Rate Variability (HRV); Wavelet Transform; 
XGBoost Classification. 
 
I. Introduction  

Obstructive Sleep Apnea (OSA) is a serious sleep 
disorder characterized by the intermittent relaxation of 
throat muscles, which obstructs the airway and leads 
to repeated interruptions in breathing during sleep. 
These apneic episodes cause fragmented sleep and 
fluctuating oxygen levels, resulting in significant health 
complications. If untreated, OSA can contribute to 

various cardiovascular diseases because the 
underlying mechanisms involve intermittent oxygen 
deprivation (hypoxemia), which activates the 
sympathetic nervous system, leading to elevated blood 
pressure, thus increasing the risk of hypertension, 
heart failure, and stroke. Moreover, repeated apneic 
events can exacerbate insulin resistance and promote 
inflammation, further raising the likelihood of 
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developing type 2 diabetes and other metabolic 
disorders [1][2]. Additionally, OSA has been associated 
with cognitive decline and increased mortality rates, 
likely due to the cumulative effects of hypoxemia and 
autonomic dysfunction, which contribute to 
cardiovascular complications and other health issues 
[2][3]. Despite these severe health risks, OSA remains 
significantly underdiagnosed worldwide, particularly in 
low-resource settings. For instance, a study in Asia 
involving 226 bariatric surgery patients revealed that 
80.5% of participants had OSA, with 24.3% having mild 
OSA, 23.9% moderate OSA, and 32.3% severe OSA. 
However, only 17.3% of these patients had been 
previously diagnosed [4]. These findings underscore 
the urgent need for more accessible, efficient, and 
effective diagnostic methods. 

Polysomnography (PSG) is the current gold 
standard for diagnosing OSA, as it monitors various 
physiological signals, including EEG, EOG, EMG, 
ECG, and pulse oximetry, to provide a comprehensive 
assessment of sleep stages and respiratory events 
[1][5]. However, PSG requires overnight monitoring in 
specialized sleep clinics and can be uncomfortable for 
patients, limiting its accessibility in resource-
constrained environments. Consequently, alternative 
methods like Home Sleep Apnea Testing (HSAT) and 
pulse oximetry have been developed. HSAT offers a 
more accessible option for diagnosing OSA in 
uncomplicated cases, but it monitors fewer parameters 
and is unsuitable for patients with comorbid conditions 
[1][5]. While more affordable, pulse oximetry only 
tracks oxygen desaturation and may yield false-
negative results [1]. Given these limitations, there is 
growing interest in developing simpler and non-
invasive diagnostic methods based on ECG analysis. 
Electrocardiography (ECG)-based methods for 
detecting obstructive sleep apnea (OSA) have gained 
significant attention due to their relative simplicity and 
non-invasiveness [6]. Recent research has shown that 
ECG signals alone can effectively detect OSA. Studies 
have demonstrated that single-lead ECG can 
accurately classify apnea events and detect apnea by 
analyzing temporal dependencies within ECG 
segments [7][8]. One of the widely used methods for 
processing ECG data is the Discrete Wavelet 
Transform (DWT), which excels in isolating the various 
components of the ECG signal for further analysis [9], 
[10]. This method is particularly useful for extracting 
HRV-related features, enabling more precise 
identification of apneic episodes [11]. HRV, which 
measures variations in the time intervals between 
heartbeats, is sensitive to autonomic nervous system 
activity changes caused by intermittent hypoxia during 
apneic events [12][13]. This analysis includes time-
domain measures, frequency-domain measures, and 
non-linear features [14]. 

In addition to HRV, Electrocardiogram-derived 
Respiration (EDR) is another promising technique for 
detecting respiratory abnormalities associated with 
OSA. EDR allows respiratory signals to be extracted 
directly from ECG data, eliminating the need for 
additional sensors and making it a more convenient 
and non-invasive method for continuous respiratory 
monitoring [15][16][17]. By leveraging the variations in 
the R-R interval caused by respiratory sinus arrhythmia 
(RSA), a natural fluctuation in heart rate corresponding 
to the breathing cycle, EDR has been shown to 
estimate respiratory patterns and apneic events 
accurately [15][17]. Furthermore, studies suggest that 
EDR effectively assesses the synchronization between 
RSA and respiration, providing insights into how OSA 
influences respiratory and autonomic function [18][19]. 
However, most existing ECG-based OSA detection 
systems still rely on wet electrodes, which are 
uncomfortable and impractical for long-term, home-
based applications due to issues such as skin irritation 
and the drying out of conductive gel [20]. Moreover, 
while ECG and HRV analyses have shown promise, 
the integration of HRV-based features, EDR extraction 
via Discrete Wavelet Transform (DWT), and advanced 
classification algorithms such as XGBoost using non-
contact mattress-embedded ECG remains 
underexplored. This highlights a critical gap in current 
research and motivates the development of a more 
practical and robust solution for home-based OSA 
detection.  

To partially address these challenges, recent 
studies have explored the use of dry electrodes made 
from conductive fabrics. These materials offer a more 
comfortable, gel-free alternative for acquiring ECG 
signals and can be seamlessly integrated into everyday 
objects, such as mattresses or clothing. Such systems 
enable continuous, unobtrusive monitoring during 
sleep, making them ideal for long-term home-based 
applications [21][22][23]. In parallel, machine learning 
has emerged as a powerful tool to enhance the 
diagnostic capability of ECG-based OSA detection. 
Traditional algorithms such as k-Nearest Neighbors (k-
NN) and Support Vector Machines (SVM) have 
achieved promising classification performance, with 
reported accuracies of up to 90.87% using decision 
trees [6], and 85.12% with single-lead ECG and only 13 
features [24]. More recently, deep learning approaches 
such as Long Short-Term Memory (LSTM) networks 
and Convolutional Neural Networks (CNN) have further 
improved detection accuracy, reaching up to 97.21% in 
some studies [7][8][11]. 

Building upon these advancements, this study 
proposed a mattress-integrated, non-contact ECG 
acquisition system using conductive fabric electrodes 
for the unobtrusive monitoring of sleep-related 
physiological signals. The acquired single-lead ECG 
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was processed using a multi-stage analytical pipeline 
consisting of DWT-based signal decomposition, HRV 
analysis across time, frequency, and non-linear 
domains, as well as ECG-derived respiration (EDR) 
estimation based on RSA. Selected features, including 
respiratory rate, SDNN, SD2, LF/HF ratio, and pNN50, 
were then classified using the XGBoost algorithm for 
automated OSA detection. 

This research aimed to develop an accurate and 
comfortable home-based system for the detection of 
Obstructive Sleep Apnea by leveraging non-contact 
ECG sensing and advanced signal processing 
techniques combined with machine learning. The key 
contributions of this study are as follows: 

1. Development of a mattress-integrated, non-contact 
ECG acquisition system using conductive fabric 
electrodes for unobtrusive home monitoring. 

2. Implementation of a signal processing framework 
using DWT to extract both HRV and EDR features 
relevant to OSA. 

3. Application of ANOVA for effective feature 
selection, resulting in physiologically meaningful 
parameters. 

4. Deployment of XGBoost classifier achieving high 
detection accuracy, demonstrating feasibility for 
real-world use. 

The remainder of this paper is organized as follows: 
Section II describes the dataset, system design, and 
methodology, including signal acquisition, processing, 
and feature extraction. Section III presents the 
experimental setup and evaluation metrics. Section IV 
discusses the results and comparisons with related 
works. Finally, Section V concludes the study and 
outlines potential directions for future research. 

 

II. Method  

The proposed non-contact ECG acquisition system 
utilized conductive fabric electrodes embedded in a 
mattress to capture cardiac signals during sleep. These 
signals were sampled at a rate of 250 Hz [25][26] and 
initially passed through an instrumentation amplifier, 
followed by a band-pass filter (BPF) to isolate the 
relevant ECG frequency components. The conditioned 
ECG signals were then transmitted to a Mikromedia 5 
for STM32F4 microcontroller development board 
(MikroElektronika, Serbia) [27], which features an 
STM32F407ZG ARM Cortex-M4 processor. The 
microcontroller board includes a 5-inch capacitive TFT 
display (800×480 resolution). Heart rate calculation 
was performed using the Discrete Wavelet Transform 
(DWT) algorithm. 

The R-R intervals were used to estimate ECG-
derived respiration (EDR) signals through DWT 
decomposition and refinement using a Moving Average 
(MAV) filter. In parallel, heart rate variability (HRV) 

features were extracted from the R-R interval sequence 
across time-domain, frequency-domain, and non-linear 
metrics. To enhance classification performance, an 
ANOVA-based feature selection process was applied 
to identify the most discriminative features relevant to 
Obstructive Sleep Apnea (OSA) detection. These 
selected features were then fed into an Extreme 
Gradient Boosting (XGBoost) classifier, which 
performs automated classification between OSA and 
non-OSA segments. 

Following classification, a notification mechanism 
was triggered in the case of detected OSA events. This 
system utilized the Twilio API to send alert messages 
via WhatsApp to caregivers or users, enabling real-time 
health monitoring and early intervention. An overview 
of the complete system architecture is illustrated in Fig. 
1, and each component is detailed in the subsequent 
subsections. 

A. Data Collection and Experimental Setup 

This study utilized two sources of ECG data: a publicly 
available dataset from patients diagnosed with 
Obstructive Sleep Apnea (OSA), and experimental 
recordings collected from healthy subjects using the 
proposed mattress-based system. The primary dataset 
was obtained from the Apnea-ECG database, which 
contains overnight ECG recordings from 35 subjects 
(30 male and 5 female) aged between 27 and 63 years 
[28]. Each recording ranges from 7 to 9 hours in 
duration and was originally sampled at 100 Hz. 
According to Penzel et al. [29], the inclusion criteria for 
this database were patients referred for suspected 
sleep apnea who underwent full overnight 
polysomnography, along with a smaller group of 
healthy control subjects. Exclusion criteria included 
subjects with severe cardiovascular disease, systemic 
illnesses that could confound autonomic regulation, or 
recordings with excessive artifacts and poor ECG 
quality.  

In addition to the database, experimental recordings 
were collected from healthy volunteers recruited at our 
institution. These subjects were aged between 21 and 
60 years, had no history of cardiovascular or 
respiratory disorders, and provided informed consent 
prior to participation. Exclusion criteria included 
smoking and, use of medications affecting heart rate 
variability. ECG signals were acquired in four different 
sleep positions: supine, left lateral, right lateral, and 
prone. For each position, five minutes of ECG data 
were recorded at a sampling frequency of 250 Hz, as 
recommended for accurate Heart Rate Variability 
(HRV) analysis [30]. 

To maintain consistency with the experimental 
recordings in this study, all signals from the Apnea-
ECG database were up-sampled to 250 Hz using a 
comprehensive signal processing approach. The up-
sampling to 250 Hz [25][26] was necessary to preserve 
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the detailed morphological characteristics of ECG 
waveforms, particularly the sharp transitions and peak 
definitions of QRS complexes, which are critical for 
accurate feature extraction and classification 
performance. Higher sampling rates ensure better 
temporal resolution for detecting subtle changes in 
cardiac dynamics and morphological variations that 
may be indicative of sleep apnea events. The up-
sampling process employed cubic spline interpolation 
to maintain signal fidelity and preserve the 
morphological characteristics of the ECG waveforms. 
Prior to interpolation, anti-aliasing measures were 
implemented through low-pass filtering at 50 Hz, 
corresponding to the Nyquist frequency of the original 
100 Hz signal, to prevent frequency domain artifacts. 
The quality of the up-sampling process was validated 
through comparison with original 250 Hz recordings 
from similar subjects, and signal distortion was 
assessed using correlation analysis, achieving 
correlation coefficients greater than 0.98, indicating 
minimal distortion and high preservation of signal 
integrity. This unified signal processing approach 
enabled consistent feature extraction pipelines across 
both datasets. 

In this study, both primary and secondary datasets 
were utilized. For consistency, all signals from the 
Apnea-ECG database were up-sampled to 250 Hz 
using cubic spline interpolation. Each recording was 

segmented into 5-minute intervals, resulting in a 
balanced dataset of 100 samples per class (normal and 
OSA). For model evaluation, the dataset was split at 
the subject level into 70% training and 30% testing 
sets, ensuring independence between subsets and 
preventing data leakage. 

B. ECG Acquisition System 

The non-contact ECG acquisition system developed in 
this study integrated conductive electrodes and custom 
signal conditioning hardware to enable unobtrusive, 
mattress-based monitoring. The conductive textile 
electrodes were fabricated from silver-plated nylon 
conductive material with a surface resistivity of 0.03 
Ω/sq. In addition, the electrodes demonstrated a 
contact impedance lower than 10 kΩ at 10 Hz, a 
conductivity of 1.67 × 10⁶ S/m, and a surface resistance 
not greater than 1 Ω/sq. These properties were further 
enhanced by an anti-oxidation surface treatment, which 
preserves the silver coating from degradation during 
exposure to air and repeated washing, thereby 
maintaining both conductivity and long-term durability 
of the textile electrodes [25].  

Each electrode was fabricated with uniform 
dimensions, 60 cm × 5 cm for the positive and negative 
terminals, and 60 cm × 10 cm for the ground. The 
electrodes were positioned horizontally on the mattress 
surface, with the positive electrode under the shoulder 
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Fig. 1. Overall system diagram. 
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blade, the negative electrode at the waist, and the 
ground electrode at the hip level. This configuration 
ensures effective body coverage during supine or 
lateral sleeping positions. This configuration ensures 
effective body coverage during supine or lateral 
sleeping positions, following Einthoven’s triangle 
principle and validated mattress-embedded electrode 
layouts [31].  

The signal conditioning circuit consists of three main 
components: an instrumentation amplifier, a band-pass 
filter (BPF), and a non-inverting adder. The AD620 
instrumentation amplifier, chosen for its high common-
mode rejection ratio and low power consumption, 
amplifies the low-amplitude ECG signals (~1 mV) to a 
readable level [23]. The BPF is designed as a two-
stage cascade, comprising a high-pass filter (HPF) with 
a cutoff frequency between 0.1–0.2 Hz to eliminate 
baseline wander, and a low-pass filter (LPF) with a 100 
Hz cutoff to suppress high-frequency noise. Finally, a 
non-inverting adder circuit was implemented to shift the 
signal baseline, ensuring compatibility with the 
microcontroller’s input range. This configuration was 
designed for reliable acquisition of clean ECG signals 
as shown in Fig. 2.  

C. Discrete Wavelet Transform 

The primary objective of ECG signal processing in this 
study is to extract key features that are indicative of 
OSA. Discrete Wavelet Transform (DWT) is particularly 
effective for identifying the QRS complex due to its 
ability to analyze non-stationary signals at multiple 
resolution levels through a filter bank structure. In this 
implementation, the Quadratic Spline Wavelet with 
Compact Support was used as the mother wavelet due 
to its smoothness and localization properties, which are 
well-suited for biomedical signals such as ECG. The 
Quadratic Spline Wavelet with Compact Support is 

mathematically defined by the wavelet function ψ() 

using Eq. (1) [9] as: 

Ψ(𝜔) = 𝑗𝜔 (
𝑠𝑖𝑛(𝜔/4)

(𝜔/4)
)

4
  (1) 

where ψ() is the wavelet function in the frequency 

domain,  is the angular frequency (rad/s), and j is the 

imaginary unit. 

The DWT decomposition was performed up to the 
third level, where wavelet coefficients at scales 1 to 3 
were analyzed in detail to isolate QRS complexes and 
R-R intervals. Gradient-based thresholding combined 
with zero-crossing detection was applied to determine 
QRS peak positions, ensuring robust detection of 
heartbeats under varying noise conditions. For each 
decomposition level, filter coefficients and frequency 
ranges were explicitly defined to preserve the clinical 
fidelity of the ECG signal. 

DWT analyzes the signal at different scales using 
high-pass filters 𝑔[𝑛] for high-frequency components 

and low-pass filters ℎ[𝑛] for low-frequency components. 

The transfer functions 𝐻(𝜔) and 𝐺(𝜔) are defined the 

spectral characteristics using Eq. (2) and Eq. (3) [9][32] 
as follows: 

𝐻(𝜔) = ∑ ℎ(𝑘)𝑒−𝑗𝑘𝜔
𝑘𝜖𝑍   (2) 

𝐺(𝜔) = ∑ 𝑔(𝑘)𝑒−𝑗𝑘𝜔
𝑘𝜖𝑍   (3) 

where H() and G() are frequency responses for LPF 

and HPF, respectively. The wavelet transform is 
performed through a convolution operation described 
by Eq. (4) [33] as follows: 

𝑊2𝑗𝑓 = 𝑆2𝑗−1𝑓 ∗ 𝑔𝑗 (4) 

where 𝑊2𝑗𝑓 is the wavelet transform result at scale 2𝑗, 

and 𝑆2𝑗−1𝑓 represent the scaled function. Considering 

the delay 𝑇𝑗=2𝑗−1, QRS peak positions were 

determined using zero crossing. This leads to the 
extraction of R-R intervals, essential for calculating 
heart rate and heart rate variability (HRV), both of 
which play a critical role in OSA detection. 

D. Heart Rate Variability Analysis 

Feature extraction from ECG signals includes time-
domain, frequency-domain, and non-linear analysis to 
assess heart rate variability (HRV), which is critical for 
evaluating autonomic nervous system function in 
relation to OSA. All HRV analyses were performed 
using standardized 5-minute segments to ensure 
statistical reliability and consistency with established 
HRV guidelines, as recommended by the Task Force 
of the European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology [34]. 

The system used a windowing approach for 
temporal segmentation. ECG signals were divided into 
5-minute non-overlapping segments to extract HRV 
features, ensuring sufficient R-R intervals for reliable 
frequency-domain analysis. For real-time OSA 
detection, a sliding 5-minute window with 1-minute 
overlap was applied, providing classification updates 
every 4 minutes. This setup balances the need for 

 
Fig. 2. ECG circuit. 

 

 

 

 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1022
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1272-1288                                   e-ISSN: 2656-8632 

 
Manuscript received June 10, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 16, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1022 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 1277               

timely detection, statistical reliability of HRV, and 
continuity across segment boundaries. 

In the time domain, several statistical metrics were 
computed to quantify beat-to-beat variability. The 
Standard Deviation of NN intervals (SDNN) (Eq. (5)) 
reflects the total variability in heart rate over the 
recording period, while Root Mean Square of 
Successive Differences (RMSSD) (Eq. (6)) and 
Standard Deviation of Successive Differences (SDSD) 
(Eq. (7)) provide insight into short-term fluctuations. 
The percentage of adjacent NN intervals differing by 
more than 50 ms (pNN50) (Eq. (8)) indicates 
parasympathetic modulation. These metrics are 
calculated using Eq. (5) to Eq. (8) [12] as follows: 

𝑆𝐷𝑁𝑁 = √
1

𝑁 − 1
∑(𝑁 − 𝑅𝑅)

2
𝑁

𝑖=1

 
 

(5) 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑁 − 1
∑(𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2

𝑁

𝑖=1

 

 

(6) 

𝑆𝐷𝑆𝐷 = √
1

𝑁 − 2
∑(∆𝑅𝑅𝑖 − ∆𝑅𝑅̅̅ ̅̅ ̅̅ )2

𝑁−1

𝑖=1

 (7) 

𝑝𝑁𝑁50 =
𝑁𝑁50

𝑁 − 1
 . 100% (8) 

where RRi is the i-th R-R interval, N is the total number 
of intervals, and NN50 is the number of interval pairs 
differing by more than 50 ms. 

For the frequency-domain analysis, power spectral 
density estimation was performed using Welch's 
method with a Hamming window of 256 points and 50% 
overlap to reduce spectral leakage and improve 
frequency resolution. The frequency bands were 
defined according to established standards: Very Low 
Frequency (VLF: 0.0033-0.04 Hz), Low Frequency (LF: 
0.04-0.15 Hz), and High Frequency (HF: 0.15-0.4 Hz). 
The analysis focused on the LF and HF bands, which 
are commonly associated with sympathetic and 
parasympathetic activity, respectively. To account for 
inter-individual variability in total power, LF (Eq. (9)) 
and HF (Eq. (10)) components were calculated by Eq. 
(9) and Eq. (10) [12] as follows: 

𝐿𝐹 =
𝐿𝐹

𝑇𝑃 − 𝑉𝐿𝐹
 (9) 

𝐻𝐹 =
𝐻𝐹

𝑇𝑃 − 𝑉𝐿𝐹
 (10) 

where TP is the total power and VLF represents the 
Very Low Frequency component. 

In the non-linear analysis, Poincaré plot analysis 
was used to visualize the correlation between 
successive R-R intervals. From the plot, two geometric 
features were extracted: SD1 (Eq. (11)), which 
represents short-term variability (perpendicular to the 
line of identity), and SD2 (Eq. (12)), which represents 
long-term variability (along the line of identity). These 
are computed with Eq. (11) and Eq. (12) [12] as: 

𝑆𝐷1 = √
1

2
𝑆𝐷𝑆𝐷2 (11) 

𝑆𝐷2 = √2𝑆𝐷𝑆𝐷2 −
1

2
𝑆𝐷𝑆𝐷2 (12) 

E. ECG-Derived Respiration (EDR) 

To extract respiratory information from ECG signals 
without the use of dedicated respiratory sensors, this 
study employed ECG-Derived Respiration (EDR) 
based on respiratory sinus arrhythmia (RSA), a natural 
modulation of the R-R interval associated with the 
breathing cycle. Specifically, the approach involves 
analyzing temporal variations in the R-R intervals, 
which are correlated with the frequency bandwidth of 
the respiratory signal. The resulting tachogram is then 
subjected to DWT using a wavelet filter bank, and the 
second-level approximation signal is selected for 
further processing. To reduce high-frequency 
fluctuations and enhance the underlying respiratory 
pattern, the signal is smoothed using a Moving Average 
(MAV) filter, defined using Eq. (13) [10] as follows: 

𝑀𝐴𝑉(𝑛) =
1

𝑀
 . ∑ 𝑑𝑎𝑡𝑎[𝑛 − 𝑖] 

𝑀−1

𝑖=0
 (13) 

where M is the window size, n is the current data point 
in the filtered signal, and data[n-i] represents the ECG-
derived respiration sample at time step (n-i). After 
smoothing, peak detection was applied to identify the 
prominent respiratory cycles. The respiratory rate was 
then calculated by determining the average time 
interval between consecutive peaks and converting this 
interval into breaths per minute by taking its inverse 
and multiplying by 60. This method enables robust, 
non-invasive estimation of respiratory activity from 
ECG data, offering additional insight into autonomic 
and respiratory function during sleep. 

F. Feature Selection and Classification 
Framework 

Following feature extraction from ECG signals, 
comprising time-domain, frequency-domain, non-
linear, and EDR, the next stage involves selecting the 
most relevant features for the classification of OSA and 
non-OSA cases. Given the multidimensional nature of 
the data, feature selection is essential to reduce 
redundancy, mitigate overfitting, and enhance 
classification performance. 
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This study employed Analysis of Variance (ANOVA) as 
a statistical filter-based method for feature selection. 
ANOVA evaluates the significance of each feature by 
comparing the variance between classes with the 
variance within each class. The feature selection 
process utilized a statistical significance threshold of p-
value less than 0.05 to identify features that 
demonstrate statistically significant differences 

between OSA and non-OSA groups. F-scores were 
calculated for all extracted features and ranked in 
descending order based on their discriminative power 
between classes. To ensure feature stability and 
prevent overfitting, a 10-fold cross-validation approach 
was implemented during the feature selection process, 
where feature rankings were evaluated across all CV 
folds to assess consistency. Features that maintained 
stable rankings across at least 80% of the CV folds 
were considered reliable and retained for subsequent 
analysis. Sequential forward selection was then applied 
based on the F-statistic ranking, progressively adding 
features until no significant improvement in cross-
validation performance was observed, thus preventing 
the inclusion of redundant or noisy features that could 
compromise model generalization. 

For a given feature, the ANOVA F-score is 
computed using Eq. (14) [35] as: 

𝐹 =
𝑆𝑆𝐵/(𝑘 − 1)

𝑆𝑆𝑊/(𝑁 − 𝑘)
 (14) 

where SSB  and SSW  denote the sum of squares 
between and within the groups, respectively, k is the 
number of classes (in this case, two), and N is the total 
number of observations. Features that exhibit a 
statistically significant difference in means across 
groups (typically with a p-value < 0.05) are retained for 
model training. 

The selected subset of features was then used as 
input to the Extreme Gradient Boosting (XGBoost) 
algorithm, a decision-tree-based ensemble learning 
method optimized for speed and performance. 
XGBoost builds an additive model in a forward stage-
wise manner, minimizing a regularized objective 
function defined with Eq. (15) and Eq. (16) [36] as 
follows: 

ℒ(𝜙) = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) +

𝑛

𝑖=1

∑ Ω(𝑓𝑘)

𝐾

𝑘=1

 (15) 

Ω(𝑓𝑘) = γT +
1

2
⋋ ‖𝑤‖2 (16) 

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is logistic loss for binary classification, 

Ω(𝑓𝑘) is the regularization term, γ and T are 

regularization hyperparameters, T denotes the number 
of leaves in the decision tree, w represents the leaf 
weights, and K is the number of boosting rounds.  

Building upon the regularized objective function 
defined in Eq. (15) and Eq. (16), the XGBoost model 
was configured through systematic hyperparameter 
optimization using grid search with 5-fold cross-
validation, resulting in optimal parameters of maximum 
depth at 6, learning rate at 0.1, and n_estimators of 
100. To address class imbalance, the Synthetic 
Minority Oversampling Technique (SMOTE) was 
applied during preprocessing to ensure balanced class 

 
(a) 

       
    (b) (c)       (d)     (e) 

Fig. 3. A mattress-integrated ECG and different 
acquisition positions (a) ECG electrode design 
on the mattress, (b) supine, (c) prone, (d) right 
lateral, and (e) left lateral.  

 

  
(a)                                   (b) 

  
(c)                                    (d) 

Fig. 4. ECG results from different positions (a) 
supine, (b) prone, (c) right lateral, and (d) left 
lateral.  
 

 
 

Fig. 5. Result for conductive textile electrode.  

 

 

 

 

 

 

 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1022
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1272-1288                                   e-ISSN: 2656-8632 

 
Manuscript received June 10, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 16, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1022 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 1279               

representation. The model incorporated L1 (alpha at 
0.1) and L2 (lambda at 0.1) regularization penalties to 
enhance generalization, along with early stopping 
criteria (patience of 10 rounds) to prevent overfitting. 
Model performance was evaluated using stratified 10-
fold cross-validation, where the dataset was partitioned 
into 10 subsets while maintaining class proportions in 
each fold, with iterative training on 9 folds and 
validation on the remaining fold to ensure robust 
performance estimation across varying data 
distributions. 

 

III. Result  

A. ECG Signal Acquisition and Evaluation 

To assess the reliability of the proposed non-contact 

ECG acquisition system for home-based monitoring, 

signal acquisition tests were conducted across different 

sleep positions. In the set of experiments, ECG signals 

were acquired from healthy subjects placed in four 

common sleep positions: supine, prone, left lateral, and 

right lateral. Conductive fabric electrodes were 

embedded within the mattress surface to ensure 

unobtrusive contact with the subject’s body. Each 

recording session lasted five minutes and was 

performed at a sampling rate of 250 Hz to maintain 

consistency across all positional variations. Position-

specific signal quality assessment revealed significant 

variations in ECG acquisition performance across 

different sleep positions. Statistical comparison of HRV 

features across positions using ANOVA (p < 0.05) 

demonstrated that supine and right lateral positions 

provided optimal signal acquisition with higher signal-to-

noise ratios and more consistent R-wave detection 

accuracy (>98%). The left lateral position showed 

moderate performance with occasional signal 

degradation due to electrode contact variability, while 

the prone position presented the greatest challenges 

with reduced signal amplitude and increased baseline 

drift. These findings indicate that supine and right lateral 

positions are most suitable for reliable cardiac 

monitoring using the proposed mattress-integrated 

system. The prone position may require alternative 

electrode configurations or additional contact points to 

achieve comparable signal quality, which represents an 

important consideration for system deployment and user 

guidance. As illustrated in Fig. 3(a)-(e) and Fig. 4(a)-(d), 

differences in signal amplitude and waveform clarity 

were observed between positions. The supine and 

lateral positions generally provided higher signal stability 

compared to the prone position, likely due to more 

consistent contact between the torso and electrodes. 

The tests aimed to evaluate the effectiveness of 

conductive textile electrodes in acquiring ECG signals 

under the supine condition. Signals were captured using 

a digital oscilloscope, and representative waveforms are 

depicted in Fig. 5. The results demonstrated that 

conductive textile electrodes were able to successfully 

transmit cardiac activity with good baseline stability and 

noise suppression. These findings highlight the 

suitability of conductive textiles for ensuring both comfort 

and reliable conductivity in long-term monitoring 

applications.  

To validate the signal acquisition pathway, the 

proposed system was benchmarked against a 

commercial ECG device. Signals obtained using the 

custom hardware and STM32F4-based digitizer were 

compared with those from a standard clinical-grade 

monitor. The comparison confirmed that the proposed 

setup is capable of capturing ECG signals with 

comparable fidelity, supporting its potential for 

subsequent feature extraction and OSA analysis. 

 
Fig. 6. Frequency domain analysis of HRV. 
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B. HRV Feature Extraction 

After acquisition and digitization, ECG signals were 

processed to extract key features associated with heart 

rate variability (HRV), which serve as important 

biomarkers in the detection of OSA. The initial stage 

involved preprocessing and QRS complex detection 

using gradient-based thresholding applied to the 

discrete wavelet transform (DWT) of the ECG signal. 

This enabled the precise localization of R peaks, from 

which R-R intervals were derived. Subsequent feature 

extraction was performed on the R-R interval sequences 

to quantify autonomic nervous system activity. The 

analysis was structured into three domains: time, 

frequency, and non-linear, each applied to data obtained 

from both healthy and OSA subjects. 

The first stage involved time-domain analysis, yielding 

features such as SDNN (standard deviation of NN 

intervals), SDSD (standard deviation of successive 

differences), RMSSD (root mean square of successive 

differences), and pNN50 (the percentage of interval 

differences greater than 50 ms). These metrics reflect 

short-and long-term variability in heart rate and are 

widely used to assess autonomic dysfunction. 

A comparative statistical summary of these features is 

presented in Table 1 for healthy subjects and subjects 

with diagnosed OSA. Notably, while healthy subjects 

exhibited higher mean values for SDSD (151.09 ms), 

RMSSD (151.09 ms), and SDNN (105.12 ms), the OSA 

group showed elevated pNN50 (57.25%) and LF/HF 

ratio (1.73), suggesting a potential shift in 

sympathovagal balance and autonomic dysregulation. 

These findings support the clinical relevance of time-

domain HRV features in distinguishing between normal 

and pathological sleep physiology. 

The second stage of the heart rate variability (HRV) 

feature extraction involved frequency-domain analysis of 

the R-R interval data. This analysis was conducted using 

Welch’s method to estimate the Power Spectral Density 

(PSD), which enabled the identification of energy 

distribution across specific frequency bands. The 

analysis focused on three primary components: Very 

Low Frequency (VLF: 0.0033–0.04 Hz), Low Frequency 

(LF: 0.04–0.15 Hz), and High Frequency (HF: 0.15–0.4 

Hz) bands. By quantifying the LF and HF power 

components, the LF/HF ratio was computed to assess 

sympathovagal balance, an important autonomic marker 

frequently altered in subjects with obstructive sleep 

apnea (OSA). The resulting spectral distribution is 

illustrated in Fig. 6, where the PSD curve is plotted 

against frequency. 

The non-linear features SD1 and SD2, derived from 

Poincaré plot analysis, provide valuable insights into the 

complex dynamics of heart rate variability that are not 

captured by conventional time or frequency domain 

metrics. SD1 reflects the short-term variability of the R-

R intervals, which is predominantly influenced by 

parasympathetic nervous system activity. 

 

Table 1. Statistical Comparison of ECG Signal 
Features Between Normal and OSA Subjects.  

Features Unit Normal 
Subjects  

OSA 
Subjects 

SDSD ms 151.1 ± 32.3 96.7 ± 6.7 

SDNN ms 105.1 ± 14.1 123.8 ± 12.9 

RMSSD ms 151.1 ± 32.3 96.7 ± 6.7 

pNN50 % 22.8 ± 2.6 57.2 ± 2.1 

LF/HF ratio 0.5 ± 0.1 1.7 ± 0.2 

SD1 ms 67.8 ± 32.4 65.6 ± 4.4 

SD2 ms 83.1 ± 10.1 160.9 ± 18.9 

Resp. 
rate 

BrPM 17.4 ± 0.4 7.9 ± 0.4 

 

Table 2. Features Ranking Based on ANOVA.  

Features ANOVA Score  p-value 

SD2 129.32 2.18 x 10-23 

Resp. rate 117.47 8.66 x 10-22 

SDNN 114.09 2.54 x 10-21 

LF/HF 72.50 4.15 x 10-15 

pNN50 44.56 2.42 x 10-10 

RMSSD 20.99 8.17 x 10-6 

SD1 20.98 8.19 x 10-5 

SDSD 19.64 1.55 x 10-5 

 

In contrast, SD2 corresponds to long-term variability, 

incorporating both sympathetic and parasympathetic 

influences and is often associated with overall 

autonomic balance. As shown in Table 1, while the SD1 

values of normal (67.8 ± 32.4 ms) and OSA (65.6 ± 4.4 

ms) subjects were relatively similar, the SD2 value in 

OSA subjects was nearly doubled (160.9 ± 18.9 ms) 

compared to that of normal subjects (83.1 ± 10.1 ms). 

This marked increase in SD2 among OSA patients may 

indicate a compensatory elevation in long-term 

autonomic modulation in response to chronic sleep-

disordered breathing events.  

C. ECG-Derived Respiration (EDR) Analysis 

Respiratory signal extraction in this study was performed 

using ECG-derived respiration (EDR), where R-R 
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interval fluctuations were analyzed to estimate the 

respiratory rate. The R-R tachogram, generated from 

ECG recordings, was processed using DWT to isolate 

respiratory components at the second level of 

decomposition. Subsequent gradient computation and 

smoothing with a moving average (MAV) filter allowed 

clear identification of respiratory peaks, from which the 

respiratory rate (breaths per minute) was derived. 

The respiratory rate obtained through the EDR 

method was compared between normal subjects and 

those diagnosed with obstructive sleep apnea (OSA), as 

summarized in Table 1. Results indicated a marked 

difference between the two groups: normal subjects 

exhibited a mean respiratory rate of 17.4 ± 0.4 breath 

per minute (BrPM), while OSA subjects showed a 

significantly lower rate of 7.9 ± 0.4 BrPM. This reduction 

in respiratory rate among OSA patients is consistent with 

known pathophysiological features of the disorder, 

where apneic events lead to irregular or diminished 

respiratory effort.  

D. Feature Selection and Classification 

Performance 

Following the extraction of eight candidate features from 

the ECG and EDR signal processing stages, namely 

SD2, respiratory rate, SDNN, LF/HF, pNN50, RMSSD, 

SD1, and SDSD, an analysis of variance (ANOVA) was 

conducted to determine the most significant features for 

obstructive sleep apnea (OSA) classification. Table 2 

presents the ranking of extracted features based on 

ANOVA scores and their corresponding p-values. The 

top-ranked feature was SD2 (ANOVA score = 129.32, p-

value = 2.18 × 10⁻²³), followed by Respiratory Rate 

(117.47, p-value = 8.66 × 10⁻²²) and SDNN (114.09, p-

value = 2.54 × 10⁻²¹), all of which exhibited extremely low 

p-values, indicating highly significant differences 

between OSA and non-OSA groups. LF/HF ratio and 

pNN50 also demonstrated strong statistical significance 

(p < 10⁻⁹), while RMSSD, SD1, and SDSD showed 

relatively lower discriminative power, although still 

statistically significant (p < 0.001). These results suggest 

that time-domain, frequency-domain, and nonlinear 

HRV features contribute differently to distinguishing 

OSA from non-OSA cases, with nonlinear parameters 

such as SD2 showing the greatest separation. 

Subsequent classification was performed using the 

Extreme Gradient Boosting (XGBoost) algorithm. The 

accuracy of the model was evaluated based on cross-

validation, where different numbers of selected features 

were tested. As shown in Fig. 7, the highest accuracy of 

96.67% was achieved when five features were used, 

revealing that the top five discriminative features were 

SD2, RR rate, SDNN, LF/HF, and pNN50, which 

demonstrated the highest contributions to group 

separation between normal and OSA subjects. 

The classification performance of the proposed 

model in distinguishing between normal and obstructive 

sleep apnea (OSA) subjects is illustrated in Table 3, 

which presents the confusion matrix along with the 

corresponding AUC-ROC score. The model achieved a 

correct classification rate of 96.6% for normal cases and 

96.8% for OSA cases, with only 3.4% of normal subjects 

misclassified as OSA and 3.2% of OSA subjects 

misclassified as normal. This corresponds to an overall 

classification accuracy of 96.7%. 

Furthermore, the area under the receiver operating 

characteristic curve (AUC-ROC) was calculated to be 

0.9911, reflecting excellent discriminatory capability of 

the model across varying classification thresholds. 

These results underscore the effectiveness of the 

feature selection method based on ANOVA, where all 

selected features demonstrated highly significant 

discriminatory power, namely SD2 (F-score = 129.32, p 

= 2.18 × 10⁻²³), respiratory rate (F-score = 117.47, p = 

8.66 × 10⁻²²), SDNN (F-score = 114.09, p = 2.54 × 10⁻²¹), 
LF/HF ratio (F-score = 72.50, p = 4.15 × 10⁻¹⁵), and 

pNN50 (F-score = 44.56, p = 2.42 × 10⁻¹⁰). All p-values 

were substantially below the significance threshold (p < 

0.001), confirming the strong statistical separation 

between OSA and normal classes. The combination of 

these five features with the XGBoost classifier achieved 

robust and highly accurate detection of OSA using ECG-

derived parameters in a non-contact setting. 

 
Fig. 7. Optimal number of features. 

 

Table 3. Confusion Matrix in Percentage.  

Matrix Predicted 
Normal  

Predicted 
Apnea 

Actual 
Normal 

96.6% 3.4% 

Actual 
Apnea 

3.2% 96.8% 
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IV. Discussion  

This study presents a non-contact, mattress-integrated 

ECG monitoring system for detecting obstructive sleep 

apnea (OSA) using heart rate variability (HRV) and 

ECG-derived respiration (EDR) features. The results 

indicate that the proposed system can effectively 

differentiate between normal and OSA subjects with 

high accuracy, validating the feasibility of unobtrusive 

sleep monitoring in home environments. 

The extracted HRV features, particularly SDNN, 

pNN50, LF/HF ratio, and SD2, demonstrated significant 

discriminative power between the two subject groups. In 

OSA patients, lower pNN50 and RMSSD values 

reflected diminished parasympathetic modulation, while 

higher LF/HF ratios indicated a sympathetic shift. These 

autonomic alterations are consistent with known 

pathophysiological mechanisms in OSA, including 

intermittent hypoxia and increased sympathetic drive 

during apneic events. 

The selected features reflect distinct 

pathophysiological mechanisms underlying OSA. SDNN 

represents overall autonomic modulation and is elevated 

in OSA due to enhanced sympathetic activation 

triggered by repetitive hypoxic episodes, leading to 

increased heart rate variability during arousal 

responses. The LF/HF ratio elevation (1.7 vs 0.5 in 

controls) indicates sympathovagal imbalance, where 

chronic intermittent hypoxia activates the sympathetic 

nervous system through chemoreceptor stimulation and 

subsequent catecholamine release. Reduced pNN50 in 

healthy subjects (22.8%) versus elevated values in OSA 

(57.2%) paradoxically reflects irregular autonomic 

responses during apneic events rather than healthy 

parasympathetic tone. SD2's dramatic increase (160.9 

vs 83.1 ms) captures the long-term heart rate oscillations 

caused by cyclic arousal patterns and oxygen 

desaturation-reoxygenation cycles characteristic of 

OSA. The significantly reduced respiratory rate (7.9 vs 

17.4 BrPM) detected through EDR directly corresponds 

to apneic episodes where respiratory effort diminishes or 

ceases entirely, validating the physiological relevance of 

our feature selection approach.  

Additionally, the SD2 value in OSA subjects was 

nearly double that of normal subjects, suggesting 

greater long-term variability in heart rhythm, potentially 

due to chronic autonomic imbalance. Interestingly, SD1 

values remained relatively stable, indicating that short-

term variability alone may not be sufficient to distinguish 

OSA, reinforcing the need for multi-domain HRV 

analysis. The respiratory rate derived via EDR also 

showed strong differentiation, with significantly lower 

values observed in the OSA group, corresponding to 

reduced respiratory effort and apnea-induced 

suppression. 

Although all eight features demonstrated statistical 

significance (p < 0.05), only the top five features, namely 

SD2, RR Rate, SDNN, LF/HF, and pNN50, were 

selected for subsequent classification. This decision was 

motivated by the need to balance discriminative power 

with model simplicity, thereby reducing redundancy and 

mitigating the risk of overfitting. The very low p-values of 

these five features (p < 10⁻⁹) indicate robust statistical 

differences between OSA and non-OSA groups, 

ensuring a reliable contribution to classification 

performance. By restricting the feature set to the most 

informative variables, the classification framework 

Table 4. Performances comparison with other studies. 

 
Method Performance 

Data Feature Extraction Classifier Accuracy Sensitivity Specificity 

Wang et al [11] ECG 

R-R interval (time and 
frequency domain); R-

peak amplitude 
(frequency domain) 

TW-MLP 
(ANN) 

97.1% 100% 91.7% 

Song et al [8] ECG R-R interval; EDR HMM+SVM 97.1% 95.8% 100% 

Sharma et al [37] ECG 
heart rate variability; 

ECG-derived respiration 
signals 

LS-SVM 97.1% 95.8% 100.0% 

Moridani [14] ECG 
time, frequency, and 
non-linear domain 

SVM - 95.46% 97.57% 

Lin et al [38] ECG 
ECG spectrogram 

features 
SVM 91.4% 89.8% 92.4% 

X. Liang et al [39] ECG R-R intervals CNN-LSTM 99.80% 96.94% 98.97% 

Zarei et al [7] PSG ECG segment CNN-LSTM 100% 100% 100% 

Proposed method ECG 
R-R interval (time, 

frequency, and non-
linear); respiratory rate 

XGBoost 96.7% 96.8% 96.6% 
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achieves improved generalization, reduced 

computational complexity, and enhanced interpretability, 

which are critical for practical deployment in real-time 

sleep monitoring systems. 

The use of ANOVA for feature selection ensured 

statistical robustness, while the XGBoost classifier 

effectively captured non-linear relationships in the data, 

resulting in a high classification accuracy of 96.7%, 

sensitivity of 96.8%, and specificity of 96.6%. The 

performance of the proposed method was compared 

with prior studies employing ECG-based approaches for 

obstructive sleep apnea (OSA) detection, as 

summarized in Table 4. Wang et al. [11] achieved a high 

accuracy of 97.1% and perfect sensitivity (100%) using 

a Time-Window Multi-Layer Perceptron (TW-MLP) 

classifier. However, their specificity was limited to 

91.7%, indicating a tendency to generate false positives. 

Similarly, Moridani [14] used features from time, 

frequency, and nonlinear domains with an SVM 

classifier, yielding 95.46% sensitivity and 97.57% 

specificity, although overall accuracy was not reported. 

Lin et al. [38], using spectrogram-based ECG features 

and an SVM classifier, reported a lower overall accuracy 

of 91.4%, further highlighting the limitation of relying 

solely on ECG signal morphology without autonomic or 

respiratory context. 

In contrast, methods that integrated ECG-derived 

respiration (EDR) features demonstrated better 

classification outcomes. Song et al. [8] combined R-R 

interval features with EDR and achieved 97.1% 

accuracy and 100% specificity using a hybrid 

HMM+SVM approach. Sharma et al. [37] also 

incorporated HRV and EDR signals, attaining high 

classification metrics with LS-SVM, reaffirming the 

importance of including respiratory dynamics in OSA 

detection models. 

Recent studies using deep learning architectures 

such as CNN-LSTM have reported state-of-the-art 

results. For example, Liang et al. [39] used R-R intervals 

with a CNN-LSTM network, achieving 99.8% accuracy, 

while Zarei et al. [7] used full PSG-derived ECG 

segments to achieve perfect scores across all metrics. 

However, these approaches require substantial 

computational resources, making them less practical for 

real-time or resource-constrained embedded systems. 

In comparison, our proposed method applies a more 

interpretable and computationally efficient supervised 

machine learning model, XGBoost, combined with 

features selected via ANOVA from time, frequency, and 

non-linear HRV domains, along with ECG-derived 

respiration rate. This approach achieved 96.7% 

accuracy, 96.8% sensitivity, and 96.6% specificity, which 

are competitive with more complex deep learning 

models. The method strikes a practical balance between 

diagnostic performance and computational simplicity, 

making it well-suited for deployment in wearable or 

mattress-based systems for home-based OSA 

screening. 

Comparative analysis reveals critical methodological 

differences affecting performance variations across 

studies. While deep learning methods [7][39] achieve 

near-perfect accuracy, they require substantial 

computational resources, making them impractical for 

embedded applications. Dataset diversity and validation 

protocols also significantly impact results, with some 

studies using segment-based splitting that may 

overestimate performance due to data leakage, whereas 

our approach employs subject-level splitting for true 

generalization. 

Most comparative studies rely on contact-based wet 

electrodes, limiting practical applicability for long-term 

home monitoring. Our method balances diagnostic 

performance (96.7% accuracy) with practical 

implementation through non-contact sensing and 

computationally efficient XGBoost classification, offering 

superior comfort and lower overhead compared to deep 

learning alternatives, making it more suitable for 

widespread home-based OSA screening. 

The positional analysis revealed important 

considerations for the practical implementation of the 

mattress-based monitoring system. While supine and 

right lateral positions demonstrated optimal signal 

acquisition, the variability observed across positions 

suggests that position-adaptive algorithms may be 

necessary for comprehensive sleep monitoring. Future 

work should focus on developing intelligent electrode 

switching mechanisms or position-dependent signal 

processing algorithms that can automatically adjust 

acquisition parameters based on detected sleep 

posture. Additionally, the acknowledgment that the 

prone position requires different electrode configurations 

highlights the need for enhanced mattress design that 

can accommodate all common sleep positions with 

equal reliability. 

Despite promising results, this study has several 

limitations. First, the sample size remains relatively 

small, which may limit the generalizability of the findings 

to broader and more diverse populations. This constraint 

underscores the need for future research involving larger 

cohorts across multiple demographics and clinical 

conditions to validate and extend the applicability of the 

proposed system. Second, the dataset used for OSA 

classification was sourced from a publicly available 

database and may differ in signal characteristics from 

the data acquired using the proposed hardware, despite 

up-sampling for consistency. Additionally, the system’s 
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performance in subjects with comorbid conditions (e.g., 

cardiac arrhythmias, COPD) was not evaluated, which 

could influence feature extraction and classification. 

Moreover, demographic variability such as age and sex 

differences was not systematically analyzed in this 

study, and these factors may also affect HRV dynamics 

and model performance. Beyond positional variability, 

real-world deployment of the system may introduce 

additional challenges such as motion artifacts, 

inconsistent electrode-skin contact, and environmental 

electrical noise. Addressing these real-world sources of 

variability will be critical to ensure consistent 

performance and user trust in daily use. 

In addition to accuracy, the computational efficiency 

and real-time feasibility of the proposed method are 

critical for practical deployment. The XGBoost classifier 

was chosen over deep learning models not only for its 

interpretability but also for its lightweight computational 

footprint, which allows processing of a 5-minute ECG 

window in only a few seconds on a microcontroller-

based system (STM32F4). This low-latency processing, 

combined with the windowing strategy that provides 

classification updates every 4 minutes, demonstrates 

that the system can operate continuously in near real-

time. Furthermore, the modest hardware requirements 

make it suitable for integration into mattress-based 

monitoring systems intended for home use, without 

reliance on high-performance computing resources. 

Despite these limitations, the study presents several 

important implications. The proposed non-contact ECG 

monitoring system, integrated into a mattress and 

powered by lightweight machine learning algorithms, 

offers a comfortable, accessible, and low-cost 

alternative to traditional polysomnography for early 

screening of OSA.  

Clinically, this approach could help reduce the burden 

on sleep laboratories and enable earlier identification of 

at-risk individuals who might otherwise go undiagnosed 

[40][41]. The use of interpretable features (e.g., SDNN, 

LF/HF, pNN50, respiratory rate) allows clinicians to 

understand model decisions, potentially aiding trust and 

adoption in medical contexts [42]. 

Future research should focus on validating the 

system across diverse populations and sleep conditions, 

including individuals with comorbid diseases. 

Additionally, expanding the feature set to include multi-

modal biosignals such as oxygen saturation (SpO₂), 
motion (actigraphy), or snoring patterns could improve 

diagnostic accuracy and differentiate between OSA 

severities. Ultimately, this study lays a foundation for 

advancing accessible, interpretable, and practical 

solutions in sleep disorder diagnostics and highlights the 

growing potential of combining biomedical signal 

processing with machine learning for personalized and 

preventive healthcare. In this work, the system was 

successfully integrated with a cloud-based monitoring 

platform that enables real-time apnea detection and 

immediate alert notifications. When an apneic event is 

detected, the system automatically sends a warning to 

the patient’s registered family member through a secure 

messaging channel. This allows for timely intervention, 

such as manually adjusting the patient’s sleeping 

position to restore airflow. In more severe or prolonged 

cases, the system also provides an emergency call 

option, enabling the caregiver to promptly contact 

ambulance services. This integrated approach 

enhances the safety and responsiveness of home-

based monitoring, bridging the gap between detection 

and action in the management of sleep apnea. 

 

V. Conclusion  

This study proposed and validated a non-contact, 

mattress-integrated system for detecting obstructive 

sleep apnea (OSA) using ECG-derived features, 

including heart rate variability (HRV) and respiratory rate 

extracted via Discrete Wavelet Transform (DWT). With 

five key features selected through ANOVA and classified 

using the XGBoost algorithm, the system achieved 

strong performance, reaching 96.7% accuracy, 96.8% 

sensitivity, and 96.6% specificity. Additional findings 

showed that the prone sleeping position produced the 

best ECG morphology, while copper tape electrodes 

yielded lower noise but were less suitable for long-term 

comfort compared to conductive textile electrodes. 

Hardware optimization further ensured stable signal 

acquisition through effective amplification and filtering. 

The system was successfully integrated with a cloud-

based real-time alert platform, which enables automatic 

apnea detection and immediate notification to 

caregivers. This feature allows early intervention, such 

as repositioning the patient or contacting emergency 

services, thereby enhancing safety in home-based 

monitoring. Future work will focus on large-scale 

validation across diverse populations, extension to multi-

night continuous monitoring, and the integration of 

Apnea-Hypopnea Index (AHI) classification to support 

severity grading. Incorporating additional biosignals 

such as SpO₂ and motion data may further improve 

diagnostic accuracy and system robustness. 
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