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Abstract Obstructive Sleep Apnea (OSA) is a potentially life-threatening sleep disorder that often remains
undiagnosed due to the complexity of conventional diagnostic methods such as polysomnography (PSG).
Currently, there is a lack of accessible, non-invasive diagnostic solutions suitable for home use. This study
proposes a novel approach to automate OSA detection using single-lead electrocardiogram (ECG) signals
acquired through non-contact conductive fabric electrodes embedded in a mattress, enabling unobtrusive
monitoring during sleep. The main contributions of the proposed study are a mattress-embedded
contactless ECG monitoring system eliminating the discomfort of traditional electrodes, and an advanced
signal processing framework integrating wavelet decomposition with machine learning for precise OSA
identification. ECG signals from 35 subjects (30 male, 5 females, aged 27-63 years) diagnosed with OSA
were obtained from the PhysioNet Apnea-ECG database, originally sampled at 100 Hz and up-sampled to
250 Hz for consistency with experimental recordings from healthy volunteers tested in various sleep
positions. Signals were recorded non-invasively during sleep in various body positions and processed
using the Discrete Wavelet Transform (DWT) up to the third level of decomposition. The processing of ECG
signals involved Heart Rate Variability (HRV) analysis, which was applied to extract information in the time
domain, frequency domain, and non-linear properties. By analyzing HRV on the respiratory sinus
arrhythmia spectrum, the respiration signal was obtained from ECG-derived respiration (EDR). Feature
selection was performed using ANOVA, resulting in a set of key features including respiratory rate, SD2,
SDNN, LF/HF ratio, and pNN50. These features were classified using the XGBoost algorithm to determine
the presence of OSA. The proposed system achieved a detection accuracy of 96.7%, demonstrating its
potential for reliable home-based OSA diagnosis. This method improves comfort through non-contact
sensing and supports early intervention by delivering timely alerts for high-risk patients.

Keywords Obstructive Sleep Apnea; Non-Contact ECG; Heart Rate Variability (HRV); Wavelet Transform;
XGBoost Classification.

l. Introduction

Obstructive Sleep Apnea (OSA) is a serious sleep
disorder characterized by the intermittent relaxation of
throat muscles, which obstructs the airway and leads
to repeated interruptions in breathing during sleep.
These apneic episodes cause fragmented sleep and
fluctuating oxygen levels, resulting in significant health
complications. If untreated, OSA can contribute to

various cardiovascular diseases because the
underlying mechanisms involve intermittent oxygen
deprivation (hypoxemia), which activates the
sympathetic nervous system, leading to elevated blood
pressure, thus increasing the risk of hypertension,
heart failure, and stroke. Moreover, repeated apneic
events can exacerbate insulin resistance and promote
inflammation, further raising the likelihood of
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developing type 2 diabetes and other metabolic
disorders [1][2]. Additionally, OSA has been associated
with cognitive decline and increased mortality rates,
likely due to the cumulative effects of hypoxemia and
autonomic  dysfunction, which  contribute to
cardiovascular complications and other health issues
[2][3]. Despite these severe health risks, OSA remains
significantly underdiagnosed worldwide, particularly in
low-resource settings. For instance, a study in Asia
involving 226 bariatric surgery patients revealed that
80.5% of participants had OSA, with 24.3% having mild
OSA, 23.9% moderate OSA, and 32.3% severe OSA.
However, only 17.3% of these patients had been
previously diagnosed [4]. These findings underscore
the urgent need for more accessible, efficient, and
effective diagnostic methods.

Polysomnography (PSG) is the current gold
standard for diagnosing OSA, as it monitors various
physiological signals, including EEG, EOG, EMG,
ECG, and pulse oximetry, to provide a comprehensive
assessment of sleep stages and respiratory events
[11[5]. However, PSG requires overnight monitoring in
specialized sleep clinics and can be uncomfortable for
patients, limiting its accessibility in resource-
constrained environments. Consequently, alternative
methods like Home Sleep Apnea Testing (HSAT) and
pulse oximetry have been developed. HSAT offers a
more accessible option for diagnosing OSA in
uncomplicated cases, but it monitors fewer parameters
and is unsuitable for patients with comorbid conditions
[11[5]. While more affordable, pulse oximetry only
tracks oxygen desaturation and may vyield false-
negative results [1]. Given these limitations, there is
growing interest in developing simpler and non-
invasive diagnostic methods based on ECG analysis.
Electrocardiography  (ECG)-based methods for
detecting obstructive sleep apnea (OSA) have gained
significant attention due to their relative simplicity and
non-invasiveness [6]. Recent research has shown that
ECG signals alone can effectively detect OSA. Studies
have demonstrated that single-lead ECG can
accurately classify apnea events and detect apnea by
analyzing temporal dependencies within ECG
segments [7][8]. One of the widely used methods for
processing ECG data is the Discrete Wavelet
Transform (DWT), which excels in isolating the various
components of the ECG signal for further analysis [9],
[10]. This method is particularly useful for extracting
HRV-related features, enabling more precise
identification of apneic episodes [11]. HRV, which
measures variations in the time intervals between
heartbeats, is sensitive to autonomic nervous system
activity changes caused by intermittent hypoxia during
apneic events [12][13]. This analysis includes time-
domain measures, frequency-domain measures, and
non-linear features [14].

In addition to HRYV, Electrocardiogram-derived
Respiration (EDR) is another promising technique for
detecting respiratory abnormalities associated with
OSA. EDR allows respiratory signals to be extracted
directly from ECG data, eliminating the need for
additional sensors and making it a more convenient
and non-invasive method for continuous respiratory
monitoring [15][16][17]. By leveraging the variations in
the R-R interval caused by respiratory sinus arrhythmia
(RSA), a natural fluctuation in heart rate corresponding
to the breathing cycle, EDR has been shown to
estimate respiratory patterns and apneic events
accurately [15][17]. Furthermore, studies suggest that
EDR effectively assesses the synchronization between
RSA and respiration, providing insights into how OSA
influences respiratory and autonomic function [18][19].
However, most existing ECG-based OSA detection
systems still rely on wet electrodes, which are
uncomfortable and impractical for long-term, home-
based applications due to issues such as skin irritation
and the drying out of conductive gel [20]. Moreover,
while ECG and HRV analyses have shown promise,
the integration of HRV-based features, EDR extraction
via Discrete Wavelet Transform (DWT), and advanced
classification algorithms such as XGBoost using non-
contact mattress-embedded ECG remains
underexplored. This highlights a critical gap in current
research and motivates the development of a more
practical and robust solution for home-based OSA
detection.

To partially address these challenges, recent
studies have explored the use of dry electrodes made
from conductive fabrics. These materials offer a more
comfortable, gel-free alternative for acquiring ECG
signals and can be seamlessly integrated into everyday
objects, such as mattresses or clothing. Such systems
enable continuous, unobtrusive monitoring during
sleep, making them ideal for long-term home-based
applications [21][22][23]. In parallel, machine learning
has emerged as a powerful tool to enhance the
diagnostic capability of ECG-based OSA detection.
Traditional algorithms such as k-Nearest Neighbors (k-
NN) and Support Vector Machines (SVM) have
achieved promising classification performance, with
reported accuracies of up to 90.87% using decision
trees [6], and 85.12% with single-lead ECG and only 13
features [24]. More recently, deep learning approaches
such as Long Short-Term Memory (LSTM) networks
and Convolutional Neural Networks (CNN) have further
improved detection accuracy, reaching up to 97.21% in
some studies [7][8][11].

Building upon these advancements, this study
proposed a mattress-integrated, non-contact ECG
acquisition system using conductive fabric electrodes
for the unobtrusive monitoring of sleep-related
physiological signals. The acquired single-lead ECG
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was processed using a multi-stage analytical pipeline
consisting of DWT-based signal decomposition, HRV
analysis across time, frequency, and non-linear
domains, as well as ECG-derived respiration (EDR)
estimation based on RSA. Selected features, including
respiratory rate, SDNN, SD2, LF/HF ratio, and pNN50,
were then classified using the XGBoost algorithm for
automated OSA detection.

This research aimed to develop an accurate and
comfortable home-based system for the detection of
Obstructive Sleep Apnea by leveraging non-contact
ECG sensing and advanced signal processing
techniques combined with machine learning. The key
contributions of this study are as follows:

1. Development of a mattress-integrated, non-contact
ECG acquisition system using conductive fabric
electrodes for unobtrusive home monitoring.

2. Implementation of a signal processing framework
using DWT to extract both HRV and EDR features
relevant to OSA.

3. Application of ANOVA for effective feature
selection, resulting in physiologically meaningful
parameters.

4. Deployment of XGBoost classifier achieving high
detection accuracy, demonstrating feasibility for
real-world use.

The remainder of this paper is organized as follows:
Section |l describes the dataset, system design, and
methodology, including signal acquisition, processing,
and feature extraction. Section Il presents the
experimental setup and evaluation metrics. Section IV
discusses the results and comparisons with related
works. Finally, Section V concludes the study and
outlines potential directions for future research.

II. Method

The proposed non-contact ECG acquisition system
utilized conductive fabric electrodes embedded in a
mattress to capture cardiac signals during sleep. These
signals were sampled at a rate of 250 Hz [25][26] and
initially passed through an instrumentation amplifier,
followed by a band-pass filter (BPF) to isolate the
relevant ECG frequency components. The conditioned
ECG signals were then transmitted to a Mikromedia 5
for STM32F4 microcontroller development board
(MikroElektronika, Serbia) [27], which features an
STM32F407ZG ARM Cortex-M4 processor. The
microcontroller board includes a 5-inch capacitive TFT
display (800x480 resolution). Heart rate calculation
was performed using the Discrete Wavelet Transform
(DWT) algorithm.

The R-R intervals were used to estimate ECG-
derived respiration (EDR) signals through DWT
decomposition and refinement using a Moving Average
(MAYV) filter. In parallel, heart rate variability (HRV)

features were extracted from the R-R interval sequence
across time-domain, frequency-domain, and non-linear
metrics. To enhance classification performance, an
ANOVA-based feature selection process was applied
to identify the most discriminative features relevant to
Obstructive Sleep Apnea (OSA) detection. These
selected features were then fed into an Extreme
Gradient Boosting (XGBoost) classifier, which
performs automated classification between OSA and
non-OSA segments.

Following classification, a notification mechanism
was triggered in the case of detected OSA events. This
system utilized the Twilio API to send alert messages
via WhatsApp to caregivers or users, enabling real-time
health monitoring and early intervention. An overview
of the complete system architecture is illustrated in Fig.
1, and each component is detailed in the subsequent
subsections.

A. Data Collection and Experimental Setup

This study utilized two sources of ECG data: a publicly
available dataset from patients diagnosed with
Obstructive Sleep Apnea (OSA), and experimental
recordings collected from healthy subjects using the
proposed mattress-based system. The primary dataset
was obtained from the Apnea-ECG database, which
contains overnight ECG recordings from 35 subjects
(30 male and 5 female) aged between 27 and 63 years
[28]. Each recording ranges from 7 to 9 hours in
duration and was originally sampled at 100 Hz.
According to Penzel et al. [29], the inclusion criteria for
this database were patients referred for suspected
sleep apnea who underwent full overnight
polysomnography, along with a smaller group of
healthy control subjects. Exclusion criteria included
subjects with severe cardiovascular disease, systemic
illnesses that could confound autonomic regulation, or
recordings with excessive artifacts and poor ECG
quality.

In addition to the database, experimental recordings
were collected from healthy volunteers recruited at our
institution. These subjects were aged between 21 and
60 years, had no history of cardiovascular or
respiratory disorders, and provided informed consent
prior to participation. Exclusion criteria included
smoking and, use of medications affecting heart rate
variability. ECG signals were acquired in four different
sleep positions: supine, left lateral, right lateral, and
prone. For each position, five minutes of ECG data
were recorded at a sampling frequency of 250 Hz, as
recommended for accurate Heart Rate Variability
(HRV) analysis [30].

To maintain consistency with the experimental
recordings in this study, all signals from the Apnea-
ECG database were up-sampled to 250 Hz using a
comprehensive signal processing approach. The up-
sampling to 250 Hz [25][26] was necessary to preserve
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the detailed morphological characteristics of ECG
waveforms, particularly the sharp transitions and peak
definitions of QRS complexes, which are critical for
accurate feature extraction and classification
performance. Higher sampling rates ensure better
temporal resolution for detecting subtle changes in
cardiac dynamics and morphological variations that
may be indicative of sleep apnea events. The up-
sampling process employed cubic spline interpolation
to maintain signal fidelity and preserve the
morphological characteristics of the ECG waveforms.
Prior to interpolation, anti-aliasing measures were
implemented through low-pass filtering at 50 Hz,
corresponding to the Nyquist frequency of the original
100 Hz signal, to prevent frequency domain artifacts.
The quality of the up-sampling process was validated
through comparison with original 250 Hz recordings
from similar subjects, and signal distortion was
assessed using correlation analysis, achieving
correlation coefficients greater than 0.98, indicating
minimal distortion and high preservation of signal
integrity. This unified signal processing approach
enabled consistent feature extraction pipelines across
both datasets.

In this study, both primary and secondary datasets
were utilized. For consistency, all signals from the
Apnea-ECG database were up-sampled to 250 Hz
using cubic spline interpolation. Each recording was

segmented into 5-minute intervals, resulting in a
balanced dataset of 100 samples per class (normal and
OSA). For model evaluation, the dataset was split at
the subject level into 70% training and 30% testing
sets, ensuring independence between subsets and
preventing data leakage.

B. ECG Acquisition System

The non-contact ECG acquisition system developed in
this study integrated conductive electrodes and custom
signal conditioning hardware to enable unobtrusive,
mattress-based monitoring. The conductive textile
electrodes were fabricated from silver-plated nylon
conductive material with a surface resistivity of 0.03
Q/sq. In addition, the electrodes demonstrated a
contact impedance lower than 10 kQ at 10 Hz, a
conductivity of 1.67 x 10® S/m, and a surface resistance
not greater than 1 Q/sq. These properties were further
enhanced by an anti-oxidation surface treatment, which
preserves the silver coating from degradation during
exposure to air and repeated washing, thereby
maintaining both conductivity and long-term durability
of the textile electrodes [25].

Each electrode was fabricated with uniform
dimensions, 60 cm x 5 cm for the positive and negative
terminals, and 60 cm x 10 cm for the ground. The
electrodes were positioned horizontally on the mattress
surface, with the positive electrode under the shoulder
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Fig. 1. Overall system diagram.
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Fig. 2. ECG circuit.

blade, the negative electrode at the waist, and the
ground electrode at the hip level. This configuration
ensures effective body coverage during supine or
lateral sleeping positions. This configuration ensures
effective body coverage during supine or lateral
sleeping positions, following Einthoven’s triangle
principle and validated mattress-embedded electrode
layouts [31].

The signal conditioning circuit consists of three main
components: an instrumentation amplifier, a band-pass
filter (BPF), and a non-inverting adder. The AD620
instrumentation amplifier, chosen for its high common-
mode rejection ratio and low power consumption,
amplifies the low-amplitude ECG signals (~1 mV) to a
readable level [23]. The BPF is designed as a two-
stage cascade, comprising a high-pass filter (HPF) with
a cutoff frequency between 0.1-0.2 Hz to eliminate
baseline wander, and a low-pass filter (LPF) with a 100
Hz cutoff to suppress high-frequency noise. Finally, a
non-inverting adder circuit was implemented to shift the
signal baseline, ensuring compatibility with the
microcontroller's input range. This configuration was
designed for reliable acquisition of clean ECG signals
as shown in Fig. 2.

C. Discrete Wavelet Transform

The primary objective of ECG signal processing in this
study is to extract key features that are indicative of
OSA. Discrete Wavelet Transform (DWT) is particularly
effective for identifying the QRS complex due to its
ability to analyze non-stationary signals at multiple
resolution levels through a filter bank structure. In this
implementation, the Quadratic Spline Wavelet with
Compact Support was used as the mother wavelet due
to its smoothness and localization properties, which are
well-suited for biomedical signals such as ECG. The
Quadratic Spline Wavelet with Compact Support is
mathematically defined by the wavelet function y(w)
using Eq. (1) [9] as:

in(w 4
P(w) = jo (Trre?) (1)

where w(w) is the wavelet function in the frequency
domain, o is the angular frequency (rad/s), and j is the
imaginary unit.

The DWT decomposition was performed up to the
third level, where wavelet coefficients at scales 1 to 3
were analyzed in detail to isolate QRS complexes and
R-R intervals. Gradient-based thresholding combined
with zero-crossing detection was applied to determine
QRS peak positions, ensuring robust detection of
heartbeats under varying noise conditions. For each
decomposition level, filter coefficients and frequency
ranges were explicitly defined to preserve the clinical
fidelity of the ECG signal.

DWT analyzes the signal at different scales using
high-pass filters g[n] for high-frequency components
and low-pass filters h[n] for low-frequency components.
The transfer functions H(w) and G(w) are defined the
spectral characteristics using Eq. (2) and Eq. (3) [9][32]
as follows:

H(w) = Ykez h(k)e™ (2)

G(w) = Ykez g(k)e (3)
where H(w) and G(w) are frequency responses for LPF
and HPF, respectively. The wavelet transform is

performed through a convolution operation described
by Eq. (4) [33] as follows:

szf=52j—1f*gj (4)
where W, f is the wavelet transform result at scale 2/,
and S,j-1f represent the scaled function. Considering
the delay T;=2/"', QRS peak positions were
determined using zero crossing. This leads to the
extraction of R-R intervals, essential for calculating
heart rate and heart rate variability (HRV), both of
which play a critical role in OSA detection.
D. Heart Rate Variability Analysis

Feature extraction from ECG signals includes time-
domain, frequency-domain, and non-linear analysis to
assess heart rate variability (HRV), which is critical for
evaluating autonomic nervous system function in
relation to OSA. All HRV analyses were performed
using standardized 5-minute segments to ensure
statistical reliability and consistency with established
HRV guidelines, as recommended by the Task Force
of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology [34].

The system used a windowing approach for
temporal segmentation. ECG signals were divided into
5-minute non-overlapping segments to extract HRV
features, ensuring sufficient R-R intervals for reliable
frequency-domain analysis. For real-time OSA
detection, a sliding 5-minute window with 1-minute
overlap was applied, providing classification updates
every 4 minutes. This setup balances the need for
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timely detection, statistical reliability of HRV, and
continuity across segment boundaries.

In the time domain, several statistical metrics were
computed to quantify beat-to-beat variability. The
Standard Deviation of NN intervals (SDNN) (Eqg. (5))
reflects the total variability in heart rate over the
recording period, while Root Mean Square of
Successive Differences (RMSSD) (Eq. (6)) and
Standard Deviation of Successive Differences (SDSD)
(Eq. (7)) provide insight into short-term fluctuations.
The percentage of adjacent NN intervals differing by
more than 50 ms (pNN50) (Eq. (8)) indicates
parasympathetic modulation. These metrics are
calculated using Eq. (5) to Eq. (8) [12] as follows:

SDNN = |— . N - RR)’
T IN=- 12( ) (5)
1 N
= _ . — )2
RMSSD = |+ — 1Z(RRL+1 RR) ®)
i=1
1 N-1
= |— . —ARR)? 7
SDSD = |+— ZZ(ARRL ARR) (7)
NN50
PNN50 = - .100% (8)

where RR; is the i-th R-R interval, N is the total number
of intervals, and NN50 is the number of interval pairs
differing by more than 50 ms.

For the frequency-domain analysis, power spectral
density estimation was performed using Welch's
method with a Hamming window of 256 points and 50%
overlap to reduce spectral leakage and improve
frequency resolution. The frequency bands were
defined according to established standards: Very Low
Frequency (VLF: 0.0033-0.04 Hz), Low Frequency (LF:
0.04-0.15 Hz), and High Frequency (HF: 0.15-0.4 Hz).
The analysis focused on the LF and HF bands, which
are commonly associated with sympathetic and
parasympathetic activity, respectively. To account for
inter-individual variability in total power, LF (Eq. (9))
and HF (Eq. (10)) components were calculated by Eq.
(9) and Eq. (10) [12] as follows:

LF
= 9
LF TP —-VLF ®)
HF
= 10
HE TP —VLF (10)

where TP is the total power and VLF represents the
Very Low Frequency component.

In the non-linear analysis, Poincaré plot analysis
was used to visualize the correlation between
successive R-R intervals. From the plot, two geometric
features were extracted: SD1 (Eq. (11)), which
represents short-term variability (perpendicular to the
line of identity), and SD2 (Eq. (12)), which represents
long-term variability (along the line of identity). These
are computed with Eq. (11) and Eq. (12) [12] as:

/1
SD1 = ESDSD2 (11)

1
SD2 = \/ZSDSDZ - ESDSDZ (12)

E. ECG-Derived Respiration (EDR)

To extract respiratory information from ECG signals
without the use of dedicated respiratory sensors, this
study employed ECG-Derived Respiration (EDR)
based on respiratory sinus arrhythmia (RSA), a natural
modulation of the R-R interval associated with the
breathing cycle. Specifically, the approach involves
analyzing temporal variations in the R-R intervals,
which are correlated with the frequency bandwidth of
the respiratory signal. The resulting tachogram is then
subjected to DWT using a wavelet filter bank, and the
second-level approximation signal is selected for
further processing. To reduce high-frequency
fluctuations and enhance the underlying respiratory
pattern, the signal is smoothed using a Moving Average
(MAV) filter, defined using Eq. (13) [10] as follows:

1 M-1
MAV(n) = — Z data[n — i] (13)
M i=0
where M is the window size, n is the current data point
in the filtered signal, and data[n-i] represents the ECG-
derived respiration sample at time step (n-i). After
smoothing, peak detection was applied to identify the
prominent respiratory cycles. The respiratory rate was
then calculated by determining the average time
interval between consecutive peaks and converting this
interval into breaths per minute by taking its inverse
and multiplying by 60. This method enables robust,
non-invasive estimation of respiratory activity from
ECG data, offering additional insight into autonomic
and respiratory function during sleep.

F. Feature Selection and Classification
Framework

Following feature extraction from ECG signals,
comprising time-domain, frequency-domain, non-
linear, and EDR, the next stage involves selecting the
most relevant features for the classification of OSA and
non-OSA cases. Given the multidimensional nature of
the data, feature selection is essential to reduce
redundancy, mitigate overfitting, and enhance
classification performance.
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Positive

Right Leg Drive (RLD)

Velcro adhesive

(b) (c) (d) (e)
Fig. 3. A mattress-integrated ECG and different
acquisition positions (a) ECG electrode design
on the mattress, (b) supine, (c) prone, (d) right

lateral, and (e) left lateral.

(@) (b)
(c) (d)

Fig. 4. ECG results from different positions (a)
supine, (b) prone, (c) right lateral, and (d) left
lateral.

Fig. 5. Result for conductive textile electrode.

This study employed Analysis of Variance (ANOVA) as
a statistical filter-based method for feature selection.
ANOVA evaluates the significance of each feature by
comparing the variance between classes with the
variance within each class. The feature selection
process utilized a statistical significance threshold of p-
value less than 0.05 to identify features that
demonstrate  statistically significant  differences

between OSA and non-OSA groups. F-scores were
calculated for all extracted features and ranked in
descending order based on their discriminative power
between classes. To ensure feature stability and
prevent overfitting, a 10-fold cross-validation approach
was implemented during the feature selection process,
where feature rankings were evaluated across all CV
folds to assess consistency. Features that maintained
stable rankings across at least 80% of the CV folds
were considered reliable and retained for subsequent
analysis. Sequential forward selection was then applied
based on the F-statistic ranking, progressively adding
features until no significant improvement in cross-
validation performance was observed, thus preventing
the inclusion of redundant or noisy features that could
compromise model generalization.

For a given feature, the ANOVA F-score is
computed using Eq. (14) [35] as:

_ SSp/(k=1)
"S5 /(N =)

where SSg and SSw denote the sum of squares
between and within the groups, respectively, k is the
number of classes (in this case, two), and N is the total
number of observations. Features that exhibit a
statistically significant difference in means across
groups (typically with a p-value < 0.05) are retained for
model training.

The selected subset of features was then used as
input to the Extreme Gradient Boosting (XGBoost)
algorithm, a decision-tree-based ensemble learning
method optimized for speed and performance.
XGBoost builds an additive model in a forward stage-
wise manner, minimizing a regularized objective
function defined with Eq. (15) and Eq. (16) [36] as
follows:

(14)

L) = ) 10D+ ) 9k (15)
i=1 k=1
0(f) = YT+ » Iwl’? (16)

where [(y;,9;) is logistic loss for binary classification,
Q(f,) is the regularization term, yandT are
regularization hyperparameters, T denotes the number
of leaves in the decision tree, w represents the leaf
weights, and K is the number of boosting rounds.

Building upon the regularized objective function
defined in Eq. (15) and Eq. (16), the XGBoost model
was configured through systematic hyperparameter
optimization using grid search with 5-fold cross-
validation, resulting in optimal parameters of maximum
depth at 6, learning rate at 0.1, and n_estimators of
100. To address class imbalance, the Synthetic
Minority Oversampling Technique (SMOTE) was
applied during preprocessing to ensure balanced class
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representation. The model incorporated L1 (alpha at
0.1) and L2 (lambda at 0.1) regularization penalties to
enhance generalization, along with early stopping
criteria (patience of 10 rounds) to prevent overfitting.
Model performance was evaluated using stratified 10-
fold cross-validation, where the dataset was partitioned
into 10 subsets while maintaining class proportions in
each fold, with iterative training on 9 folds and
validation on the remaining fold to ensure robust
performance estimation across varying data
distributions.

lll. Result

A. ECG Signal Acquisition and Evaluation

To assess the reliability of the proposed non-contact
ECG acquisition system for home-based monitoring,
signal acquisition tests were conducted across different
sleep positions. In the set of experiments, ECG signals
were acquired from healthy subjects placed in four
common sleep positions: supine, prone, left lateral, and
right lateral. Conductive fabric electrodes were
embedded within the mattress surface to ensure
unobtrusive contact with the subject's body. Each
recording session lasted five minutes and was
performed at a sampling rate of 250 Hz to maintain
consistency across all positional variations. Position-
specific signal quality assessment revealed significant
variations in ECG acquisition performance across
different sleep positions. Statistical comparison of HRV
features across positions using ANOVA (p < 0.05)
demonstrated that supine and right lateral positions
provided optimal signal acquisition with higher signal-to-
noise ratios and more consistent R-wave detection
accuracy (>98%). The left lateral position showed
moderate  performance with occasional signal
degradation due to electrode contact variability, while

the prone position presented the greatest challenges
with reduced signal amplitude and increased baseline
drift. These findings indicate that supine and right lateral
positions are most suitable for reliable cardiac
monitoring using the proposed mattress-integrated
system. The prone position may require alternative
electrode configurations or additional contact points to
achieve comparable signal quality, which represents an
important consideration for system deployment and user
guidance. As illustrated in Fig. 3(a)-(e) and Fig. 4(a)-(d),
differences in signal amplitude and waveform clarity
were observed between positions. The supine and
lateral positions generally provided higher signal stability
compared to the prone position, likely due to more
consistent contact between the torso and electrodes.

The tests aimed to evaluate the effectiveness of
conductive textile electrodes in acquiring ECG signals
under the supine condition. Signals were captured using
a digital oscilloscope, and representative waveforms are
depicted in Fig. 5. The results demonstrated that
conductive textile electrodes were able to successfully
transmit cardiac activity with good baseline stability and
noise suppression. These findings highlight the
suitability of conductive textiles for ensuring both comfort
and reliable conductivity in long-term monitoring
applications.

To validate the signal acquisition pathway, the
proposed system was benchmarked against a
commercial ECG device. Signals obtained using the
custom hardware and STM32F4-based digitizer were
compared with those from a standard clinical-grade
monitor. The comparison confirmed that the proposed
setup is capable of capturing ECG signals with
comparable fidelity, supporting its potential for
subsequent feature extraction and OSA analysis.

Frequency Domain Analysis of RR-interval
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Fig. 6. Frequency domain analysis of HRV.
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B. HRYV Feature Extraction

After acquisition and digitization, ECG signals were
processed to extract key features associated with heart
rate variability (HRV), which serve as important
biomarkers in the detection of OSA. The initial stage
involved preprocessing and QRS complex detection
using gradient-based thresholding applied to the
discrete wavelet transform (DWT) of the ECG signal.
This enabled the precise localization of R peaks, from
which R-R intervals were derived. Subsequent feature
extraction was performed on the R-R interval sequences
to quantify autonomic nervous system activity. The
analysis was structured into three domains: time,
frequency, and non-linear, each applied to data obtained
from both healthy and OSA subjects.

The first stage involved time-domain analysis, yielding
features such as SDNN (standard deviation of NN
intervals), SDSD (standard deviation of successive
differences), RMSSD (root mean square of successive
differences), and pNN50 (the percentage of interval
differences greater than 50 ms). These metrics reflect
short-and long-term variability in heart rate and are
widely used to assess autonomic dysfunction.

A comparative statistical summary of these features is
presented in Table 1 for healthy subjects and subjects
with diagnosed OSA. Notably, while healthy subjects
exhibited higher mean values for SDSD (151.09 ms),
RMSSD (151.09 ms), and SDNN (105.12 ms), the OSA
group showed elevated pNN50 (57.25%) and LF/HF
ratio (1.73), suggesting a potential shift in
sympathovagal balance and autonomic dysregulation.
These findings support the clinical relevance of time-
domain HRV features in distinguishing between normal
and pathological sleep physiology.

The second stage of the heart rate variability (HRV)
feature extraction involved frequency-domain analysis of
the R-R interval data. This analysis was conducted using
Welch’s method to estimate the Power Spectral Density
(PSD), which enabled the identification of energy
distribution across specific frequency bands. The
analysis focused on three primary components: Very
Low Frequency (VLF: 0.0033-0.04 Hz), Low Frequency
(LF: 0.04-0.15 Hz), and High Frequency (HF: 0.15-0.4
Hz) bands. By quantifying the LF and HF power
components, the LF/HF ratio was computed to assess
sympathovagal balance, an important autonomic marker
frequently altered in subjects with obstructive sleep
apnea (OSA). The resulting spectral distribution is
illustrated in Fig. 6, where the PSD curve is plotted
against frequency.

The non-linear features SD1 and SD2, derived from
Poincaré plot analysis, provide valuable insights into the
complex dynamics of heart rate variability that are not

captured by conventional time or frequency domain
metrics. SD1 reflects the short-term variability of the R-
R intervals, which is predominantly influenced by
parasympathetic nervous system activity.

Table 1. Statistical Comparison of ECG Signal
Features Between Normal and OSA Subjects.

Features  Unit Normal OSA
Subjects Subjects
SDSD ms 151.1 £ 32.3 96.7 £ 6.7
SDNN ms 105.1+£14.1 123.8+12.9
RMSSD ms 151.1 £ 32.3 96.7 £ 6.7
pNN50 % 22.8+2.6 57.2+ 21
LF/HF ratio 0.5+0.1 1.7+£0.2
SD1 ms 67.8+324 65.6+4.4
SD2 ms 83.1+10.1 160.9 £ 18.9
Resp. BrPM 174+£04 79104
rate

Table 2. Features Ranking Based on ANOVA.

Features ANOVA Score p-value
SD2 129.32 218 x 1023
Resp. rate 117.47 8.66 x 102
SDNN 114.09 2.54 x 102
LF/HF 72.50 4.15x 107
pNN50 44.56 242 x 10710
RMSSD 20.99 8.17 x 10°°
SD1 20.98 8.19x 10°
SDSD 19.64 1.55x10°

In contrast, SD2 corresponds to long-term variability,
incorporating both sympathetic and parasympathetic
infuences and is often associated with overall
autonomic balance. As shown in Table 1, while the SD1
values of normal (67.8 + 32.4 ms) and OSA (65.6 + 4.4
ms) subjects were relatively similar, the SD2 value in
OSA subjects was nearly doubled (160.9 + 18.9 ms)
compared to that of normal subjects (83.1 £ 10.1 ms).
This marked increase in SD2 among OSA patients may
indicate a compensatory elevation in long-term
autonomic modulation in response to chronic sleep-
disordered breathing events.

C. ECG-Derived Respiration (EDR) Analysis

Respiratory signal extraction in this study was performed
using ECG-derived respiration (EDR), where R-R
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interval fluctuations were analyzed to estimate the
respiratory rate. The R-R tachogram, generated from
ECG recordings, was processed using DWT to isolate
respiratory components at the second level of
decomposition. Subsequent gradient computation and
smoothing with a moving average (MAV) filter allowed
clear identification of respiratory peaks, from which the
respiratory rate (breaths per minute) was derived.

The respiratory rate obtained through the EDR
method was compared between normal subjects and
those diagnosed with obstructive sleep apnea (OSA), as
summarized in Table 1. Results indicated a marked
difference between the two groups: normal subjects
exhibited a mean respiratory rate of 17.4 + 0.4 breath
per minute (BrPM), while OSA subjects showed a
significantly lower rate of 7.9 £ 0.4 BrPM. This reduction
in respiratory rate among OSA patients is consistent with
known pathophysiological features of the disorder,
where apneic events lead to irregular or diminished
respiratory effort.

D. Feature Selection and
Performance

Following the extraction of eight candidate features from
the ECG and EDR signal processing stages, namely
SD2, respiratory rate, SDNN, LF/HF, pNN50, RMSSD,
SD1, and SDSD, an analysis of variance (ANOVA) was
conducted to determine the most significant features for
obstructive sleep apnea (OSA) classification. Table 2
presents the ranking of extracted features based on
ANOVA scores and their corresponding p-values. The
top-ranked feature was SD2 (ANOVA score = 129.32, p-
value = 2.18 x 1072, followed by Respiratory Rate
(117.47, p-value = 8.66 x 1072?) and SDNN (114.09, p-
value =2.54 x 107"), all of which exhibited extremely low
p-values, indicating highly significant differences
between OSA and non-OSA groups. LF/HF ratio and
pNN50 also demonstrated strong statistical significance
(p < 107°), while RMSSD, SD1, and SDSD showed
relatively lower discriminative power, although still
statistically significant (p <0.001). These results suggest
that time-domain, frequency-domain, and nonlinear
HRV features contribute differently to distinguishing
OSA from non-OSA cases, with nonlinear parameters
such as SD2 showing the greatest separation.

Subsequent classification was performed using the
Extreme Gradient Boosting (XGBoost) algorithm. The
accuracy of the model was evaluated based on cross-
validation, where different numbers of selected features
were tested. As shown in Fig. 7, the highest accuracy of
96.67% was achieved when five features were used,
revealing that the top five discriminative features were
SD2, RR rate, SDNN, LF/HF, and pNN50, which

Classification

demonstrated the highest contributions to group
separation between normal and OSA subjects.

The classification performance of the proposed
model in distinguishing between normal and obstructive
sleep apnea (OSA) subjects is illustrated in Table 3,
which presents the confusion matrix along with the
corresponding AUC-ROC score. The model achieved a
correct classification rate of 96.6% for normal cases and
96.8% for OSA cases, with only 3.4% of normal subjects
misclassified as OSA and 3.2% of OSA subjects
misclassified as normal. This corresponds to an overall
classification accuracy of 96.7%.

Furthermore, the area under the receiver operating
characteristic curve (AUC-ROC) was calculated to be
0.9911, reflecting excellent discriminatory capability of
the model across varying classification thresholds.
These results underscore the effectiveness of the
feature selection method based on ANOVA, where all
selected features demonstrated highly significant
discriminatory power, namely SD2 (F-score = 129.32, p
= 2.18 x 10722), respiratory rate (F-score = 117.47, p =

Accuracy vs Number of Features Selected by ANOVA

=== Best: 5 features {Acc=0.9667)
I

096

094

Accuracy

090

088 /

1 2 3 4 5 6 7 8
Number of Selected Features

Fig. 7. Optimal number of features.

Table 3. Confusion Matrix in Percentage.

Matrix Predicted Predicted
Normal Apnea

Actual 96.6% 3.4%

Normal

Actual 3.2% 96.8%

Apnea

8.66 x 10722), SDNN (F-score = 114.09, p = 2.54 x 1072"),
LF/HF ratio (F-score = 72.50, p = 4.15 x 107", and
pNN50 (F-score = 44.56, p = 2.42 x 107°). All p-values
were substantially below the significance threshold (p <
0.001), confirming the strong statistical separation
between OSA and normal classes. The combination of
these five features with the XGBoost classifier achieved
robust and highly accurate detection of OSA using ECG-
derived parameters in a non-contact setting.
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IV. Discussion

This study presents a non-contact, mattress-integrated
ECG monitoring system for detecting obstructive sleep
apnea (OSA) using heart rate variability (HRV) and
ECG-derived respiration (EDR) features. The results
indicate that the proposed system can effectively
differentiate between normal and OSA subjects with
high accuracy, validating the feasibility of unobtrusive
sleep monitoring in home environments.

The extracted HRV features, particularly SDNN,
pNN50, LF/HF ratio, and SD2, demonstrated significant
discriminative power between the two subject groups. In
OSA patients, lower pNN50 and RMSSD values
reflected diminished parasympathetic modulation, while
higher LF/HF ratios indicated a sympathetic shift. These
autonomic alterations are consistent with known
pathophysiological mechanisms in OSA, including
intermittent hypoxia and increased sympathetic drive
during apneic events.

The selected features reflect distinct
pathophysiological mechanisms underlying OSA. SDNN
represents overall autonomic modulation and is elevated
in OSA due to enhanced sympathetic activation
triggered by repetitive hypoxic episodes, leading to
increased heart rate variability during arousal
responses. The LF/HF ratio elevation (1.7 vs 0.5 in
controls) indicates sympathovagal imbalance, where
chronic intermittent hypoxia activates the sympathetic
nervous system through chemoreceptor stimulation and
subsequent catecholamine release. Reduced pNN50 in
healthy subjects (22.8%) versus elevated values in OSA
(57.2%) paradoxically reflects irregular autonomic
responses during apneic events rather than healthy

parasympathetic tone. SD2's dramatic increase (160.9
vs 83.1 ms) captures the long-term heart rate oscillations
caused by cyclic arousal patterns and oxygen
desaturation-reoxygenation cycles characteristic of
OSA. The significantly reduced respiratory rate (7.9 vs
17.4 BrPM) detected through EDR directly corresponds
to apneic episodes where respiratory effort diminishes or
ceases entirely, validating the physiological relevance of
our feature selection approach.

Additionally, the SD2 value in OSA subjects was
nearly double that of normal subjects, suggesting
greater long-term variability in heart rhythm, potentially
due to chronic autonomic imbalance. Interestingly, SD1
values remained relatively stable, indicating that short-
term variability alone may not be sufficient to distinguish
OSA, reinforcing the need for multi-domain HRV
analysis. The respiratory rate derived via EDR also
showed strong differentiation, with significantly lower
values observed in the OSA group, corresponding to
reduced respiratory effot and apnea-induced
suppression.

Although all eight features demonstrated statistical
significance (p < 0.05), only the top five features, namely
SD2, RR Rate, SDNN, LF/HF, and pNN50, were
selected for subsequent classification. This decision was
motivated by the need to balance discriminative power
with model simplicity, thereby reducing redundancy and
mitigating the risk of overfitting. The very low p-values of
these five features (p < 107°) indicate robust statistical
differences between OSA and non-OSA groups,
ensuring a reliable contribution to classification
performance. By restricting the feature set to the most
informative variables, the classification framework

Table 4. Performances comparison with other studies.

Method Performance
Data Feature Extraction Classifier Accuracy Sensitivity Specificity
R-R interval (time and
frequency domain); R- TW-MLP o o o
Wang et al [11] ECG peak amplitude (ANN) 97.1% 100% 91.7%
(frequency domain)
Song et al [8] ECG R-R interval; EDR HMM+SVM 97.1% 95.8% 100%
heart rate variability;
Sharmaetal [37] ECG ECG-derived respiration LS-SVM 97.1% 95.8% 100.0%
signals
Moridani [14] ~ ECG  lme,frequency, and SVM ; 95.46%  97.57%
non-linear domain
Linetal[38] ~ ECG -~ CSPectogram SVM 91.4% 89.8% 92.4%
X. Liang etal [39] ECG R-R intervals CNN-LSTM 99.80% 96.94% 98.97%
Zarei et al [7] PSG ECG segment CNN-LSTM 100% 100% 100%
R-R interval (time,
Proposed method ECG frequency, and non- XGBoost 96.7% 96.8% 96.6%

linear); respiratory rate
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achieves improved generalization, reduced
computational complexity, and enhanced interpretability,
which are critical for practical deployment in real-time
sleep monitoring systems.

The use of ANOVA for feature selection ensured
statistical robustness, while the XGBoost classifier
effectively captured non-linear relationships in the data,
resulting in a high classification accuracy of 96.7%,
sensitivity of 96.8%, and specificity of 96.6%. The
performance of the proposed method was compared
with prior studies employing ECG-based approaches for
obstructive sleep apnea (OSA) detection, as
summarized in Table 4. Wang et al. [11] achieved a high
accuracy of 97.1% and perfect sensitivity (100%) using
a Time-Window Multi-Layer Perceptron (TW-MLP)
classifier. However, their specificity was limited to
91.7%, indicating a tendency to generate false positives.
Similarly, Moridani [14] used features from time,
frequency, and nonlinear domains with an SVM
classifier, yielding 95.46% sensitivity and 97.57%
specificity, although overall accuracy was not reported.
Lin et al. [38], using spectrogram-based ECG features
and an SVM classifier, reported a lower overall accuracy
of 91.4%, further highlighting the limitation of relying
solely on ECG signal morphology without autonomic or
respiratory context.

In contrast, methods that integrated ECG-derived
respiration (EDR) features demonstrated better
classification outcomes. Song et al. [8] combined R-R
interval features with EDR and achieved 97.1%
accuracy and 100% specificity using a hybrid
HMM+SVM approach. Sharma et al. [37] also
incorporated HRV and EDR signals, attaining high
classification metrics with LS-SVM, reaffirming the
importance of including respiratory dynamics in OSA
detection models.

Recent studies using deep learmning architectures
such as CNN-LSTM have reported state-of-the-art
results. For example, Liang et al. [39] used R-R intervals
with a CNN-LSTM network, achieving 99.8% accuracy,
while Zarei et al. [7] used full PSG-derived ECG
segments to achieve perfect scores across all metrics.
However, these approaches require substantial
computational resources, making them less practical for
real-time or resource-constrained embedded systems.

In comparison, our proposed method applies a more
interpretable and computationally efficient supervised
machine learning model, XGBoost, combined with
features selected via ANOVA from time, frequency, and
non-linear HRV domains, along with ECG-derived
respiration rate. This approach achieved 96.7%
accuracy, 96.8% sensitivity, and 96.6% specificity, which
are competitive with more complex deep learning

models. The method strikes a practical balance between
diagnostic performance and computational simplicity,
making it well-suited for deployment in wearable or
mattress-based systems for home-based OSA
screening.

Comparative analysis reveals critical methodological
differences affecting performance variations across
studies. While deep learning methods [7][39] achieve
near-perfect accuracy, they require substantial
computational resources, making them impractical for
embedded applications. Dataset diversity and validation
protocols also significantly impact results, with some
studies using segment-based spliting that may
overestimate performance due to data leakage, whereas
our approach employs subject-level splitting for true
generalization.

Most comparative studies rely on contact-based wet
electrodes, limiting practical applicability for long-term
home monitoring. Our method balances diagnostic
performance (96.7% accuracy) with  practical
implementation through non-contact sensing and
computationally efficient XGBoost classification, offering
superior comfort and lower overhead compared to deep
learning alternatives, making it more suitable for
widespread home-based OSA screening.

The positional analysis revealed important
considerations for the practical implementation of the
mattress-based monitoring system. While supine and
right lateral positions demonstrated optimal signal
acquisition, the variability observed across positions
suggests that position-adaptive algorithms may be
necessary for comprehensive sleep monitoring. Future
work should focus on developing intelligent electrode
switching mechanisms or position-dependent signal
processing algorithms that can automatically adjust
acquisition parameters based on detected sleep
posture. Additionally, the acknowledgment that the
prone position requires different electrode configurations
highlights the need for enhanced mattress design that
can accommodate all common sleep positions with
equal reliability.

Despite promising results, this study has several
limitations. First, the sample size remains relatively
small, which may limit the generalizability of the findings
to broader and more diverse populations. This constraint
underscores the need for future research involving larger
cohorts across multiple demographics and clinical
conditions to validate and extend the applicability of the
proposed system. Second, the dataset used for OSA
classification was sourced from a publicly available
database and may differ in signal characteristics from
the data acquired using the proposed hardware, despite
up-sampling for consistency. Additionally, the system’s
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performance in subjects with comorbid conditions (e.g.,
cardiac arrhythmias, COPD) was not evaluated, which
could influence feature extraction and classification.
Moreover, demographic variability such as age and sex
differences was not systematically analyzed in this
study, and these factors may also affect HRV dynamics
and model performance. Beyond positional variability,
real-world deployment of the system may introduce
additional challenges such as motion artifacts,
inconsistent electrode-skin contact, and environmental
electrical noise. Addressing these real-world sources of
variability will be critical to ensure consistent
performance and user trust in daily use.

In addition to accuracy, the computational efficiency
and real-time feasibility of the proposed method are
critical for practical deployment. The XGBoost classifier
was chosen over deep learning models not only for its
interpretability but also for its lightweight computational
footprint, which allows processing of a 5-minute ECG
window in only a few seconds on a microcontroller-
based system (STM32F4). This low-latency processing,
combined with the windowing strategy that provides
classification updates every 4 minutes, demonstrates
that the system can operate continuously in near real-
time. Furthermore, the modest hardware requirements
make it suitable for integration into mattress-based
monitoring systems intended for home use, without
reliance on high-performance computing resources.

Despite these limitations, the study presents several
important implications. The proposed non-contact ECG
monitoring system, integrated into a mattress and
powered by lightweight machine learning algorithms,
offers a comfortable, accessible, and low-cost
alternative to traditional polysomnography for early
screening of OSA.

Clinically, this approach could help reduce the burden
on sleep laboratories and enable earlier identification of
at-risk individuals who might otherwise go undiagnosed
[40][41]. The use of interpretable features (e.g., SDNN,
LF/HF, pNN50, respiratory rate) allows clinicians to
understand model decisions, potentially aiding trust and
adoption in medical contexts [42].

Future research should focus on validating the
system across diverse populations and sleep conditions,
including individuals with comorbid diseases.
Additionally, expanding the feature set to include multi-
modal biosignals such as oxygen saturation (SpO,),
motion (actigraphy), or snoring patterns could improve
diagnostic accuracy and differentiate between OSA
severities. Ultimately, this study lays a foundation for
advancing accessible, interpretable, and practical
solutions in sleep disorder diagnostics and highlights the
growing potential of combining biomedical signal

processing with machine learning for personalized and
preventive healthcare. In this work, the system was
successfully integrated with a cloud-based monitoring
platform that enables real-time apnea detection and
immediate alert notifications. When an apneic event is
detected, the system automatically sends a warning to
the patient’s registered family member through a secure
messaging channel. This allows for timely intervention,
such as manually adjusting the patient's sleeping
position to restore airflow. In more severe or prolonged
cases, the system also provides an emergency call
option, enabling the caregiver to promptly contact
ambulance services. This integrated approach
enhances the safety and responsiveness of home-
based monitoring, bridging the gap between detection
and action in the management of sleep apnea.

V. Conclusion

This study proposed and validated a non-contact,
mattress-integrated system for detecting obstructive
sleep apnea (OSA) using ECG-derived features,
including heart rate variability (HRV) and respiratory rate
extracted via Discrete Wavelet Transform (DWT). With
five key features selected through ANOVA and classified
using the XGBoost algorithm, the system achieved
strong performance, reaching 96.7% accuracy, 96.8%
sensitivity, and 96.6% specificity. Additional findings
showed that the prone sleeping position produced the
best ECG morphology, while copper tape electrodes
yielded lower noise but were less suitable for long-term
comfort compared to conductive textile electrodes.
Hardware optimization further ensured stable signal
acquisition through effective amplification and filtering.
The system was successfully integrated with a cloud-
based real-time alert platform, which enables automatic
apnea detection and immediate notification to
caregivers. This feature allows early intervention, such
as repositioning the patient or contacting emergency
services, thereby enhancing safety in home-based
monitoring. Future work will focus on large-scale
validation across diverse populations, extension to multi-
night continuous monitoring, and the integration of
Apnea-Hypopnea Index (AHI) classification to support
severity grading. Incorporating additional biosignals
such as SpO, and motion data may further improve
diagnostic accuracy and system robustness.

Acknowledgment

The authors would like to express their sincere gratitude
to the Biomedical Engineering Department, Institut
Teknologi Sepuluh Nopember (ITS), for providing the
facilities and technical support throughout this research.
The authors also acknowledge the valuable participation

Manuscript received June 10, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 16, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1022

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1284


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1022
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1272-1288

e-ISSN: 2656-8632

of all volunteers involved in the signal acquisition phase
of this study.

Funding

Partial financial support was provided by the Directorate
of Research and Community Service, Institut Teknologi
Sepuluh Nopember (Grant No. 1095/PKS/ITS/2024).

Data Availability

This study utilized two datasets: (1) The publicly
available PhysioNet Apnea-ECG Database [28]
(https://physionet.org/content/apnea-ecg/1.0.0/), which
contains overnight ECG recordings from 35 subjects and
is freely accessible for research purposes under
PhysioNet's data use agreement, and (2) experimental
ECG recordings from healthy volunteers collected at our
institution under ethics approval (No.
3974/1T2.XXI/T/TU.00.08/V11/2024). The experimental
dataset contains proprietary recordings and is available
from the corresponding author upon reasonable request,
subject to ethical approval and institutional data sharing
policies.

Author Contribution

This study was conceptualized and supervised by Nada
Fitrieyatul Hikmah, who also managed project
administration. Rachmad Setiawan contributed to
system design, validation, and resource support. Rima
Amalia curated the data, implemented the software
pipeline, performed formal analysis, and prepared the
initial manuscript draft. Zain Budi Syulthoni provided
medical and clinical insights, guided interpretation in the
context of OSA, and assisted in manuscript review. Dwi
Oktavianto Wahyu Nugroho focused on instrumentation
development, system integration, and manuscript
refinement. Mu’afa Ali Syakir conducted experimental
investigations, collected mattress-based ECG data, and
supported the visualization of results. All authors
reviewed and approved the final manuscript and are
accountable for the integrity and accuracy of the work.

Declarations

Ethical Approval

All research activities involving human subjects were
performed under the approval of the Research Ethics
Committee, Institut Teknologi Sepuluh Nopember, which
granted authorization for the experimental protocols
(Approval No. 3974/IT2. XXII/T/TU.00.08/V11/2024).

Consent for Publication Participants.

Consent for publication was given by all participants.
Competing Interests

This paper has no conflict of interest for publication.
References

(1]

(2]

[3]

4]

5]

(6]

[7]

(8]

9]

[10]

[11]

D. J. Gottlieb and N. M. Punjabi, “Diagnosis and
Management of Obstructive Sleep Apnea: A
Review,” JAMA - Journal of the American Medical
Association, vol. 323, no. 14, pp. 1380-1400,
2020.

S. Q. Ali and A. Hossen, ‘“ldentification of
obstructive sleep apnea using artificial neural
networks and wavelet packet decomposition of the
HRV signal,” Journal of Engineering Research,
vol. 17, no. 1, pp. 24-33, 2020.

Y. C. Lin, J. K. Chiang, C. M. Lu, and Y. H. Kao,
“Association of Heart Rate Variability with
Obstructive Sleep Apnea in Adults,” Medicina
(Lithuania), vol. 59, no. 3, 2023.

G. Hou Loo MBBS, R. Rajan MBBS, A. Mohd
Tamil BMedSc, and N. Ritza Kosai, “Prevalence of
obstructive sleep apnea in an Asian bariatric
population: an underdiagnosed dilemma,” Surgery
for Obesity and Related Diseases, vol. 16, no. 6,
pp. 778-783, 2020.

J. Vensel Rundo and R. Downey lll, “Chapter 25-
Polysomnography,”  Handbook of  Clinical
Neurology, Elsevier, pp. 381-392, 2019.

M. Sharma, M. Raval, and U. R. Acharya, “A new
approach to identify obstructive sleep apnea using
an optimal orthogonal wavelet filter bank with ECG
signals”, Inform Med Unlocked, vol. 16, Jan. 2019.

A. Zarei, H. Beheshti, and B. M. Asl, “Detection of
sleep apnea using deep neural networks and
single-lead ECG signals”, Biomed Signal Process
Control, vol. 71, 2022.

C. Song, K. Liu, X. Zhang, L. Chen, and X. Xian,
“An Obstructive Sleep Apnea Detection Approach
Using a Discriminative Hidden Markov Model from
ECG Signals”, IEEE Trans Biomed Eng, vol. 63,
no. 7, pp. 1532-1542, 2016.

N. F. Hikmah, R. Setiawan, and T. A. Putri, “Real-
Time Detection of Premature Ventricular
Contraction Using Discrete Wavelet Transform”,
In: 2022 International Seminar on Intelligent
Technology and Its Applications: Advanced
Innovations of Electrical Systems for Humanity,
ISITIA 2022 - Proceeding, Institute of Electrical
and Electronics Engineers Inc., 2022, pp. 12-17.
2022.

N. F. Hikmah, A. Arifin, T. A. Sardjono, and E. A.
Suprayitno, “A signal processing framework for
multimodal cardiac  analysis”, In: 2015
International Seminar on Intelligent Technology
and lts Applications (ISITIA) 2015, IEEE, 2015.

T. Wang, C. Lu, and G. Shen, “Detection of Sleep
Apnea from Single-Lead ECG Signal Using a Time
Window Artificial Neural Network”, Biomed Res
Int, vol. 2019, 2019.

Manuscript received June 10, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 16, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1022

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1285


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1022
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1272-1288

e-ISSN: 2656-8632

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

N. F. Hikmah, R. Setiawan, and M. D. Gunawan,
“Sleep Quality Assessment from Robust Heart
and Muscle Fatigue Estimation Using Supervised
Machine Learning”, International Journal of
Intelligent Engineering and Systems, vol. 16, no.
2, pp. 319-331, 2023.

D. Padovano, A. Martinez-Rodrigo, J. M. Pastor,
J. J. Rieta, and R. Alcaraz, “On the Generalization
of Sleep Apnea Detection Methods Based on
Heart Rate Variability and Machine Learning”,
IEEE Access, vol. 10, pp. 92710-92725, 2022.

M. K. Moridani, “A Novel Clinical Method for
Detecting Obstructive Sleep Apnea using of
Nonlinear Mapping”, J Biomed Phys Eng, vol. 12,
no. 1, pp. 31-34, 2022.

J. Boyle, N. Bidargaddi, A. Sarela, and M.
Karunanithi, “Automatic detection of respiration
rate from ambulatory single-lead ECG”, IEEE
Transactions on Information Technology in
Biomedicine, vol. 13, no. 6, pp. 890-896, Nov.
2009.

A. Espiritu Santo and C. Carbajal, “Respiration
rate extraction from ecg signal via discrete wavelet
transform”, In: 2010 2nd Circuits and Systems for
Medical and  Environmental  Applications
Workshop, CASME 2010, 2010.

Y. Zhao, J. Zhao, and Q. Li, “Derivation of
respiratory signals from single-lead ECG,” in
Proceedings - 2008 International Seminar on
Future BioMedical Information Engineering, FBIE
2008, pp. 15—18. 2008.

Y. Alzaabi and A. H. Khandoker, “Investigating
Phase Coherence between Respiratory Sinus
Arrhythmia and Respiration in Depressed Patients
with Obstructive Sleep Apnea across the Sleep
Stages”, In: Computing in Cardiology, |EEE
Computer Society, 2022.

M. R. Bonsignore, S. Romano, O. Marrone, and G.
Insalaco, “Respiratory sinus arrhythmia during
obstructive sleep apneas in humans”, J Sleep
Res, vol. 4, pp. 68-70, 1995.

E. Ozkaya and P. D. L. D. A. L. Kavlak Bozkurt,
“Allergic contact dermatitis caused by self-
adhesive electrocardiography electrodes: A rare
case with concomitant roles of nickel and
acrylates”, Contact Dermatitis, vol. 70, no. 2, pp.
121-123, 2014.

|. Sadek, E. Seet, J. Biswas, B. Abdulrazak, and
M. Mokhtari, “Nonintrusive Vital Signs Monitoring
for Sleep Apnea Patients: A Preliminary Study”,
IEEE Access, vol. 6, pp. 2506-2514, 2017.

S. Majumder, L. Chen, O. Marinov, C. H. Chen, T.
Mondal, and M. Jamal Deen, “Noncontact
Wearable Wireless ECG Systems for Long-Term
Monitoring”, IEEE Rev Biomed Eng, vol. 11, pp.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

306-321, 2018.

S. Peng, K. Xu, and W. Chen, “Comparison of
active electrode materials for non-contact ECG
measurement”, Sensors, vol. 19, no. 16, 2019.

F. Bozkurt, M. K. Ucar, M. R. Bozkurt, and C.
Bilgin, “Detection of Abnormal Respiratory Events
with Single Channel ECG and Hybrid Machine
Learning Model in Patients with Obstructive Sleep
Apnea”, IRBM, vol. 41, no. 5, pp. 241-251, 2020.

S. Peng, K. Xu, S. Bao, Y. Yuan, C. Dai and W.
Chen, "Flexible Electrodes-Based Smart Mattress
for Monitoring Physiological Signals of Heart and
Autonomic Nerves in a Non-Contact Way,"
in IEEE Sensors Journal, vol. 21, no. 1, pp. 6-15,
1 Jan.1, 2021, doi: 10.1109/JSEN.2020.3012697.

F. Shaffer and J. P. Ginsberg, "An overview of
heart rate variability metrics and norms", Frontiers
in Public Health, vol. 5, no. 258, 2017.

MikroElektronika, "Mikromedia 5 for STM32F4
Capacitive - MIKROE-3619." [Online]. Available:
https://www.mikroe.com/mikromedia-5-for-stm32-
capacitive. [Accessed: September 11, 2025].

A. L. Goldberger et al, “PhysioBank,
PhysioToolkit, and PhysioNet Components of a
New Research Resource for Complex Physiologic
Signals”, Circulation, vol. 101, no. 23, 2000.

T. Penzel et al.,, "The Apnea-ECG Database",
Computers in Cardiology, vol. 29, pp. 255-258,
2002.

F. Shaffer and J. P. Ginsberg, “An Overview of
Heart Rate Variability Metrics and Norms”,
Frontiers Media S.A. 2017.

A. Paul and J. R. Jacob, “Electrocardiographic
lead reversals,” Indian Pacing and
Electrophysiology Group. 2023.

M. Bahoura, M. Hassani, and M. Hubin, “DSP
Implementation of Wavelet Transform for Real
Time ECC Waveforms Detection and Heart Rate
Analysis,” Elsevier Computer Methods Programs
Biomedical, pp. 35-44, 1997.

J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha,
and P. Laguna, “A Wavelet-Based ECG
Delineator: Evaluation on Standard Databases,”
IEEE Transactions on Biomedical Engineering,
vol. 51, no. 4, 2004.

Task Force of the European Society of Cardiology
and the North American Society of Pacing and
Electrophysiology. Heart rate variability: standards
of measurement, physiological interpretation, and
clinical use. European Heart Journal.
1996;17(3):354-381.

D. C. Montgomery, "Chapter 3: Experiments with
a Single Factor: The Analysis of Variance," Design
and analysis of experiments, 8th ed., New York:

Manuscript received June 10, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 16, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1022

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).

1286


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1022
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1272-1288

e-ISSN: 2656-8632

John Wiley & Sons, pp. 65-120, 2012.

[36] T. Chen and C. Guestrin, “XGBoost: A scalable
tree boosting system,” in Proceedings of the 22nd
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp.
785-794, doi:10.1145/2939672.2939785.

[37] H. Sharma and K. K. Sharma, “An algorithm for
sleep apnea detection from single-lead ECG using
Hermite basis functions,” Comput Biol Med, vol.
77, pp. 116-124, 2016.

[38] C.Y.Lin,Y.W.Wang, F. Setiawan, N. T. H. Trang,
and C. W. Lin, “Sleep apnea classification
algorithm development using a machine-learning
framework and bag-of-features derived from
electrocardiogram spectrograms,” J Clin Med, vol.
11, no. 1, Jan. 2022.

[39] X. Liang, X. Qiao, and Y. Li, “Obstructive Sleep
Apnea Detection Using Combination of CNN and
LSTM Techniques,” In: 2019 |EEE 8th Joint
International Information Technology and Artificial
Intelligence Conference (ITAIC 2019). IEEE,
2019.

[40] A. S. M. Shamsuzzaman, B. J. Gersh, and V. K.
Somers, "Obstructive sleep apnea: implications
for cardiac and vascular disease," JAMA, vol. 290,
no. 14, pp. 1906-1914, 2003.

[41] P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E.
W. Hagen, and K. M. Hla, "Increased prevalence
of sleep-disordered breathing in adults," Am. J.
Epidemiol., vol. 177, no. 9, pp. 1006-1014, 2013.

[42] S. Tonekaboni, S. Joshi, M. D. McCradden, and A.
Goldenberg, "What clinicians want:
contextualizing explainable machine learning for
clinical end use," Proc. Mach. Learn. Res., vol.
106, pp. 359-380, 2019.

Author Biography

Nada Fitrieyatul Hikmah is a lecturer
and currently serves as Secretary of
the Department of Biomedical
Engineering at the Faculty of
Intelligent Electrical Technology and
Informatics, Institut Teknologi
Sepuluh Nopember (ITS), Surabaya,
Indonesia. She  received  her
Bachelor's degree in Biomedical Engineering from
Airlangga University in 2012 and her Master's degree
in Electrical Engineering (Biomedical Engineering)
from ITS in 2016. Her research interests include
cardiac engineering, biomedical signal processing, and
medical image analysis. She has published numerous
scientific articles in national and international journals
and conferences. In addition, she is the author of a
textbook on digital signal processing in biomedical
applications. Her recent works focus on non-contact

physiological monitoring and the integration of machine
learning in medical diagnostics.

Rachmad Setiawan earned a
bachelor's degree in Electronics from
the Sepuluh Nopember Institute of
Technology (ITS) in 1995. Then, he
continued his master's degree in
Instrumentation and Control at the
Bandung Institute of Technology
(ITB) and earned his master's degree
in 1999. In 2013-2014, he conducted
research on the Development of Closed-Loop FES
Systems, with an emphasis on developing system
infrastructure, joint angle sensors, and wearable
controllers based on wireless technology. His current
activity is to become a lecturer at the Department of
Biomedical Engineering, Faculty of Intelligent Electrical
and Informatics Technology, Sepuluh Nopember
Institute of Technology (ITS), Surabaya, Indonesia.

Rima Amalia is currently a Master’s
degree student in the International

—

/&Aa* Master's Program in
=y Telecommunication Engineering,
\a/// with a focus on RF and Microwave

w A Engineering, at National Sun Yat-sen

University, Taiwan (ROC). She
‘ began her studies in 2025 and is
\ 4 currently in her first semester. During

"~ her graduate studies, she actively
participates in research projects related to wireless
communication systems and antenna design. She
received her Bachelor of Engineering (B.Eng) degree
in Biomedical Engineering from Institut Teknologi
Sepuluh Nopember (ITS), Indonesia, in 2024. At ITS,
she was involved in student research activities focusing
on biomedical signal processing and health technology
innovation.

Zain Budi Syulthoni earned his
Medical Doctor in the Faculty of
Medicine from Universitas Airlangga
(UNAIR) in 2010 and his
Psychiatrist Specialist at Universitas
Airlangga (UNAIR) in 2021. During
his medical and specialist training,
he was actively involved in various
clinical and community health
programs focusing on mental health awareness.
Currently, he works as a lecturer at the Faculty of
Medicine and Health, Institut Teknologi Sepuluh
Nopember (ITS), Indonesia. At ITS, he also contributes
to curriculum development that integrates psychiatry
and technology-based healthcare solutions. His

Manuscript received June 10, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 16, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1022

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1287


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1022
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1272-1288 e-ISSN: 2656-8632

research interests include early intervention in
psychiatric disorders, child and adolescent psychiatry,
and technology-based intervention in psychiatry.

Dwi Oktavianto Wahyu Nugroho
received his Bachelor's degree in
Electro Engineering, Engineering
Faculty, Brawijaya University in
2009. His Master's was taken in
Electrical Engineering - Electronics,
specializing in Industrial Electronics
at Institut Teknologi Sepuluh
Nopember (ITS) and earned his
Master's in 2016. His work experience started in 2009
at Cipta Karya, Dinas Pekerjaan Umum, East Java
Province, until 2010. He continued his work at
Perusahaan Daerah Air Minum (PDAM), Sidoarjo, from
2010 until 2017. Currently, he works as a lecturer at the
Department of Instrumentation Engineering, Vocational
Faculty, ITS, Indonesia. His research interests focused
on medical instrumentation, sensor instrumentation
development, energy harvesting, and mechatronics.

Mu'afa Ali Syakir is a biomedical
engineering professional
specializing in biomedical
intelligent instrumentation, with a
focus on noncontact technology.
He holds a degree in Biomedical
Engineering from Institut Teknologi
Sepuluh Nopember. During his
studies, he was actively engaged in
innovation projects at the
intersection of engineering and medicine. His research
interests lie at the intersection of biomedical
engineering and advanced instrumentation, aiming to
innovate and improve healthcare technologies through
noncontact solutions. Mu'afa's work focuses on
developing cutting-edge, noninvasive methods that
have the potential to revolutionize patient care and
diagnostic practices. Through his contributions, he
strives to make healthcare more efficient,
accurate, and accessible.

Manuscript received June 10, 2025; Revised September 20, 2025; Accepted October 10, 2025; date of publication October 16, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1022
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).

1288


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1022
https://creativecommons.org/licenses/by-sa/4.0/

	II. Method
	III. Result
	IV. Discussion
	V. Conclusion

